{"id":20300,"date":"2021-07-22T00:00:46","date_gmt":"2021-07-21T16:00:46","guid":{"rendered":"https:\/\/www.science.nus.edu.sg\/?p=20300"},"modified":"2021-07-22T09:03:25","modified_gmt":"2021-07-22T01:03:25","slug":"controllable-surface-defect-engineering-on-transition-metal-trichalcogenide","status":"publish","type":"post","link":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/","title":{"rendered":"Controllable surface defect engineering on transition-metal trichalcogenide"},"content":{"rendered":"<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\" lang=\"EN-GB\">NUS scientists have developed a method for controllable introduction of two different types of sulphur vacancies into zirconium trisulfide (ZrS<sub>3<\/sub>) turning it into an efficient photocatalyst for hydrogen peroxide (H<sub>2<\/sub>O<sub>2<\/sub>) generation and benzylamine oxidation.<\/span><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"EN-GB\">The introduction of defects can cause unexpected changes in the physical and chemical properties of materials. As a result, <\/span><span lang=\"EN\">defect engineering has been a versatile tool for developing more efficient photocatalysts in chemical reactions. <\/span><span lang=\"EN-GB\">In photocatalytic applications, the introduction of defects can have a <\/span><span lang=\"EN\">significant impact on the optical absorption, charge carrier dynamics, and surface catalysis kinetics of the materials. Better understanding of the <\/span><span lang=\"EN-GB\">structure-activity relationships brought about by the introduction of these defects can result in the development of <\/span><span lang=\"EN\">more efficient photocatalytic materials. <\/span><span lang=\"EN\">\u00a0<\/span><\/span><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"EN\"><\/span><\/span><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"EN-GB\">A research team led by Prof CHEN Wei from both the Departments of Physics and Chemistry, National University of Singapore has developed a method for controllable introduction of two different types of defects, the <\/span><span lang=\"DE\">disulfide anions (S<sub>2<\/sub><sup>2-<\/sup>) and the sulfide ion (S<sup>2-<\/sup>) vacancies into ZrS<sub>3<\/sub> nanobelts <\/span><span lang=\"EN-GB\">(Figure (a) to (f)). The <\/span><span lang=\"DE\">ZrS<sub>3<\/sub> nanobelts are long one-dimensional nanostructures that look like ribbons. <\/span><span lang=\"EN-GB\">The researchers found that the <\/span><span lang=\"DE\">S<sub>2<\/sub><sup>2-<\/sup> and S<sup>2-<\/sup> vacancies can be introduced into the nanobelt material through two different <\/span><span lang=\"EN-GB\">methods (Figure (g) and (h)). For S<sub>2<\/sub><sup>2-<\/sup> vacancies, this involves annealing the ZrS<sub>3<\/sub> nanobelt at 700<\/span><span lang=\"EN-GB\">\u2103 <\/span><span lang=\"EN-GB\">under vacuum conditions. For S<sup>2-<\/sup> vacancies, a lithium-based hydrothermal method is used. By varying<\/span><span lang=\"DE\"> the <\/span><span lang=\"EN-US\">annealing time <\/span><span lang=\"DE\">(10, 15, and 20 mins) <\/span><span lang=\"EN-US\">and amount of lithium present, defect engineered <\/span><span lang=\"DE\">ZrS<sub>3<\/sub> material with varying amount of S<sub>2<\/sub><sup>2-<\/sup> vacancies and S<sup>2-<\/sup> vacancies can be obtained. <\/span><\/span><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"DE\">The researchers found that this defect engineered ZrS<sub>3<\/sub> material can enhance the photocatalytic production of H<sub>2<\/sub>O<sub>2<\/sub> coupled with the selective oxidation of benzylamine to benzonitrile in water. They systematically investigated the effects of S<sub>2<\/sub><sup>2-<\/sup> and S<sup>2-<\/sup> vacancies on the charge carrier dynamics and photocatalytic performance. Their research findings show that the S<sub>2<\/sub><sup>2-<\/sup> vacancies can significantly facilitate the separation of photogenerated charge carriers. Separately, the S<sup>2-<\/sup> vacancies not only promote the electron conduction and hole extraction in the photocatalytic process but they also improve the kinetics of the benzylamine oxidation. These two different types of vacancies in the ZrS<sub>3<\/sub> material work together to improve the performance of the photocatalytic reaction. Under illumination by a simulated sunlight, the ZrS<sub>3<\/sub> material produces H<sub>2<\/sub>O<sub>2<\/sub> and benzonitrile at a rate of 78.1 \u00b1 1.5 and <\/span><span lang=\"EN-US\">32.0 \u00b1 1.2<\/span><span lang=\"EN-US\"> <\/span><span lang=\"EL\">\u03bc<\/span><span lang=\"EN-US\">mol h<sup>-1<\/sup> respectively. \u00a0<\/span><\/span><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"DE\"><\/span><\/span><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"EN-GB\">Prof\u00a0Chen said,\u00a0\u201cOur research findings open up a new route for<\/span><span lang=\"DE\"> defect engineering<\/span><span lang=\"EN-GB\"> and <\/span><span lang=\"DE\">promise a potential strategy for <\/span><span lang=\"EN-GB\">the study of structure-activity relationships for the design and development of more efficient photocatalysts<\/span>.”<\/span><\/p>\n<p><img fetchpriority=\"high\" decoding=\"async\" width=\"1003\" height=\"1006\" src=\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_3.jpg\" alt=\"\" class=\"alignnone size-full wp-image-20313\" srcset=\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_3.jpg 1003w, https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_3-300x300.jpg 300w, https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_3-450x450.jpg 450w, https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_3-768x770.jpg 768w\" sizes=\"(max-width: 1003px) 100vw, 1003px\" \/><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\"><span lang=\"DE\">Figure (a-f) shows the schematic process of the transformation of monoclinic zirconium trisulfide, ZrS<sub>3<\/sub> (ICCD PDF no. 30-1498) into hexagonal zirconium sulfide, ZrS<sub>2<\/sub> (ICCD PDF no. 11-0679) from the [010] (a-c) and [001] (d-f) views. Under heat treatment in vaccum conditions, ZrS<sub>3<\/sub> (a, d) releases sulphur ions to form a distorted crystal structure of ZrS<sub>2<\/sub> (b, e). The distorted crystal structure with the sulphur vacancies then undergoes structural relaxation by adjusting the length and angle of its bonds (c, f). Figure (g and h) shows the different type of sulphur <\/span><span lang=\"EN-US\">vacancies. <\/span><span lang=\"EN-GB\">High-angle annular dark-field scanning transmission electron microscopy (<\/span><span lang=\"EN-US\">HAADF-STEM) images of (g) ZrS<sub>3<\/sub> with S<sub>2<\/sub><sup>2-<\/sup> vacancies and (h) ZrS<sub>3<\/sub> with both S<sub>2<\/sub><sup>2-<\/sup> and S<sup>2-<\/sup> vacancies measured from a spherical aberration-corrected transmission electron m<span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\">icroscope (TEM). Inset: the crystal lattice of ZrS<sub>3<\/sub> along the [001] orientation. The red and yellow circles represent S<sub>2<\/sub><sup>2-<\/sup>and S<sup>2-<\/sup> vacancies, respectively.<\/span><\/span><span lang=\"EN-US\"> <\/span><span lang=\"DE\">[Credit: Nature Communications]<\/span><\/span><\/p>\n<p> <\/p>\n<p><strong><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\">Reference<\/span><\/strong><\/p>\n<p><span style=\"font-family: arial, helvetica, sans-serif; font-size: 16px;\">Tian ZL; Han C*; Zhao Y; Dai WR; Lian X; Wang YN; Zheng Y; Shi Y; Pan X; Huang ZC; Li HX; Chen W*, \u201cEfficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS<span><span lang=\"EN-US\"><sub>3<\/sub><\/span><\/span> nanobelts\u201d NATURE COMMUNICATIONS Volume: 12 Issue: 1 Article Number: 2039 DOI:10.1038\/s41467-021-22394-8 Published: 2021.<\/span><\/p>\n","protected":false},"excerpt":{"rendered":"<p>NUS scientists have developed a method for controllable introduction of two different types of sulphur vacancies into zirconium trisulfide (ZrS<sub>3<\/sub>…)<\/p>\n","protected":false},"author":16,"featured_media":20298,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"footnotes":""},"categories":[23,13],"tags":[],"class_list":["post-20300","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-advanced-materials","category-research-news"],"acf":[],"yoast_head":"<!-- This site is optimized with the Yoast SEO Premium plugin v23.6 (Yoast SEO v23.6) - https:\/\/yoast.com\/wordpress\/plugins\/seo\/ -->\n<title>Controllable surface defect engineering on transition-metal trichalcogenide - NUS Faculty of Science<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Controllable surface defect engineering on transition-metal trichalcogenide\" \/>\n<meta property=\"og:description\" content=\"NUS scientists have developed a method for controllable introduction of two different types of sulphur vacancies into zirconium trisulfide (ZrS3...)\" \/>\n<meta property=\"og:url\" content=\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\" \/>\n<meta property=\"og:site_name\" content=\"NUS Faculty of Science\" \/>\n<meta property=\"article:publisher\" content=\"https:\/\/www.facebook.com\/NUSFacultyofScience\/\" \/>\n<meta property=\"article:published_time\" content=\"2021-07-21T16:00:46+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-07-22T01:03:25+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg\" \/>\n\t<meta property=\"og:image:width\" content=\"446\" \/>\n\t<meta property=\"og:image:height\" content=\"318\" \/>\n\t<meta property=\"og:image:type\" content=\"image\/jpeg\" \/>\n<meta name=\"author\" content=\"SOH Kok Hoe\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"SOH Kok Hoe\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\"},\"author\":{\"name\":\"SOH Kok Hoe\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/7d763fa59b757623726b1c72282de82b\"},\"headline\":\"Controllable surface defect engineering on transition-metal trichalcogenide\",\"datePublished\":\"2021-07-21T16:00:46+00:00\",\"dateModified\":\"2021-07-22T01:03:25+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\"},\"wordCount\":640,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/#organization\"},\"image\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage\"},\"thumbnailUrl\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg\",\"articleSection\":[\"Advanced materials\",\"Research News\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\",\"url\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\",\"name\":\"Controllable surface defect engineering on transition-metal trichalcogenide - NUS Faculty of Science\",\"isPartOf\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/#website\"},\"primaryImageOfPage\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage\"},\"image\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage\"},\"thumbnailUrl\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg\",\"datePublished\":\"2021-07-21T16:00:46+00:00\",\"dateModified\":\"2021-07-22T01:03:25+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/\"]}]},{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage\",\"url\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg\",\"contentUrl\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg\",\"width\":446,\"height\":318},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/www.science.nus.edu.sg\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Controllable surface defect engineering on transition-metal trichalcogenide\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#website\",\"url\":\"https:\/\/www.science.nus.edu.sg\/\",\"name\":\"NUS Faculty of Science\",\"description\":\"Leading in Science Education, Research and Innovation to Transform Our Future\",\"publisher\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/www.science.nus.edu.sg\/?s={search_term_string}\"},\"query-input\":{\"@type\":\"PropertyValueSpecification\",\"valueRequired\":true,\"valueName\":\"search_term_string\"}}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#organization\",\"name\":\"NUS Faculty of Science\",\"url\":\"https:\/\/www.science.nus.edu.sg\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2022\/06\/fos-logo-768x190-1.png\",\"contentUrl\":\"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2022\/06\/fos-logo-768x190-1.png\",\"width\":768,\"height\":190,\"caption\":\"NUS Faculty of Science\"},\"image\":{\"@id\":\"https:\/\/www.science.nus.edu.sg\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.facebook.com\/NUSFacultyofScience\/\",\"https:\/\/www.instagram.com\/nus.fos\/?hl=en\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/7d763fa59b757623726b1c72282de82b\",\"name\":\"SOH Kok Hoe\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/9b9160c6f1e2f411cd00f9372bf78344?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/9b9160c6f1e2f411cd00f9372bf78344?s=96&d=mm&r=g\",\"caption\":\"SOH Kok Hoe\"},\"url\":\"https:\/\/www.science.nus.edu.sg\/blog\/author\/scisohkh\/\"}]}<\/script>\n<!-- \/ Yoast SEO Premium plugin. -->","yoast_head_json":{"title":"Controllable surface defect engineering on transition-metal trichalcogenide - NUS Faculty of Science","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/","og_locale":"en_US","og_type":"article","og_title":"Controllable surface defect engineering on transition-metal trichalcogenide","og_description":"NUS scientists have developed a method for controllable introduction of two different types of sulphur vacancies into zirconium trisulfide (ZrS3...)","og_url":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/","og_site_name":"NUS Faculty of Science","article_publisher":"https:\/\/www.facebook.com\/NUSFacultyofScience\/","article_published_time":"2021-07-21T16:00:46+00:00","article_modified_time":"2021-07-22T01:03:25+00:00","og_image":[{"width":446,"height":318,"url":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg","type":"image\/jpeg"}],"author":"SOH Kok Hoe","twitter_card":"summary_large_image","twitter_misc":{"Written by":"SOH Kok Hoe","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#article","isPartOf":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/"},"author":{"name":"SOH Kok Hoe","@id":"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/7d763fa59b757623726b1c72282de82b"},"headline":"Controllable surface defect engineering on transition-metal trichalcogenide","datePublished":"2021-07-21T16:00:46+00:00","dateModified":"2021-07-22T01:03:25+00:00","mainEntityOfPage":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/"},"wordCount":640,"commentCount":0,"publisher":{"@id":"https:\/\/www.science.nus.edu.sg\/#organization"},"image":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage"},"thumbnailUrl":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg","articleSection":["Advanced materials","Research News"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/","url":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/","name":"Controllable surface defect engineering on transition-metal trichalcogenide - NUS Faculty of Science","isPartOf":{"@id":"https:\/\/www.science.nus.edu.sg\/#website"},"primaryImageOfPage":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage"},"image":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage"},"thumbnailUrl":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg","datePublished":"2021-07-21T16:00:46+00:00","dateModified":"2021-07-22T01:03:25+00:00","breadcrumb":{"@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#primaryimage","url":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg","contentUrl":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2021\/07\/276._Chen_W_CHM_20210419_b.jpg","width":446,"height":318},{"@type":"BreadcrumbList","@id":"https:\/\/www.science.nus.edu.sg\/blog\/2021\/07\/controllable-surface-defect-engineering-on-transition-metal-trichalcogenide\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/www.science.nus.edu.sg\/"},{"@type":"ListItem","position":2,"name":"Controllable surface defect engineering on transition-metal trichalcogenide"}]},{"@type":"WebSite","@id":"https:\/\/www.science.nus.edu.sg\/#website","url":"https:\/\/www.science.nus.edu.sg\/","name":"NUS Faculty of Science","description":"Leading in Science Education, Research and Innovation to Transform Our Future","publisher":{"@id":"https:\/\/www.science.nus.edu.sg\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/www.science.nus.edu.sg\/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/www.science.nus.edu.sg\/#organization","name":"NUS Faculty of Science","url":"https:\/\/www.science.nus.edu.sg\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/www.science.nus.edu.sg\/#\/schema\/logo\/image\/","url":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2022\/06\/fos-logo-768x190-1.png","contentUrl":"https:\/\/www.science.nus.edu.sg\/wp-content\/uploads\/2022\/06\/fos-logo-768x190-1.png","width":768,"height":190,"caption":"NUS Faculty of Science"},"image":{"@id":"https:\/\/www.science.nus.edu.sg\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.facebook.com\/NUSFacultyofScience\/","https:\/\/www.instagram.com\/nus.fos\/?hl=en"]},{"@type":"Person","@id":"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/7d763fa59b757623726b1c72282de82b","name":"SOH Kok Hoe","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/www.science.nus.edu.sg\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/9b9160c6f1e2f411cd00f9372bf78344?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/9b9160c6f1e2f411cd00f9372bf78344?s=96&d=mm&r=g","caption":"SOH Kok Hoe"},"url":"https:\/\/www.science.nus.edu.sg\/blog\/author\/scisohkh\/"}]}},"_links":{"self":[{"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/posts\/20300"}],"collection":[{"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/users\/16"}],"replies":[{"embeddable":true,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/comments?post=20300"}],"version-history":[{"count":10,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/posts\/20300\/revisions"}],"predecessor-version":[{"id":20314,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/posts\/20300\/revisions\/20314"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/media\/20298"}],"wp:attachment":[{"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/media?parent=20300"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/categories?post=20300"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.science.nus.edu.sg\/wp-json\/wp\/v2\/tags?post=20300"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}