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On the cover: Deep learning enabled functional fluorescence imaging. The grayscale images display the raw channel intensities 
taken in time. The red, green, and blue channels represent parameter maps, extracted by specially developed convolutional neural 
networks.



Learning physics from complex dynamics 
Machine learning offers a new way to discover macroscopic physical laws of complex 
dynamical systems

Introduction

Laws of physics are succinct 
descriptions of nature that are 
amenable to human understanding 
and offer deep insight into the physical 
phenomena. However, for a highly 
complex system where there is little 
prior knowledge, it may be very 
difficult to discover such descriptions. 
With advent of data-driven technology, 
machine learning offers an alternative 
approach to achieve this.

There are two generic approaches 
to describe the dynamics of complex 
systems: the microscopic approach 
which models the fine-grained 
dynamics of each component of 
the system and their interactions 
(e.g. molecular dynamics), and the 
macroscopic approach which focuses 
on the evolution of observable 
quantities that represent the coarse-
grained, large-scale behaviour (e.g. 
thermodynamics). The microscopic 
approach has the advantage of 
accuracy, but it is computationally 
prohibitive for most realistic physical 
systems of interest. On the other 
hand, the macroscopic approach, 
which provides a relation between 
a small number of observable and 
interpretable parameters, thus being 
very efficient even for highly complex 
systems. However, constructing 
such descriptions require deep 
theoretical knowledge or extensive 
experimentation, and they have only 
been constructed for a handful of 
idealistic systems. With the growing 
availability of computational and 
experimental data, it would be 
extremely beneficial if this process can 
be automated.

In their recent work [1], Dr Li Qianxiao 
and his colleagues developed a 
machine-learning based method to 
automatically extract macroscopic 
physical principles from observations 

of trajectory data, giving rise to an 
alternative approach to construct 
thermodynamic descriptions for 
dissipative systems. 

Methodology

The approach is called Stochastic 
OnsagerNet (Fig. 1), which integrates 
machine learning with statistical 
physics to develop macroscopic 
models for complex, stochastic, and 
dissipative dynamical systems. Starting 
with certain macroscopic quantities 
of interest, the method introduces a 
small set of auxiliary closure variables, 
which facilitate the creation of a 
data-driven yet physically grounded 
dynamical equation governing 
their collective time evolution. This 
approach is inherently interpretable, 
drawing from Lars Onsager’s work on 
non-equilibrium statistical physics [2]. 
For example, it generates an effective 
potential analogous to free energy, 
yielding a data-driven equation of state. 
Unlike traditional phenomenological 
models that assume simplified forms 
for free energy, here the free energy 
is approximated using neural networks 
specifically designed to learn from 
data.

Application to polymer stretching 
dynamics

The effectiveness of the method is 
demonstrated by studying a well-
known problem in polymer rheology: 
the stretching of a long polymer chain 
under externally applied forces. While 
the microscopic physics governing 
each particle in the polymer chain is 
straightforward and well understood, 
predicting the macroscopic behaviour, 
such as the chain’s length over time, 
poses significant challenges. This 
difficulty arises from the complex 
interactions between thermal noise, 
polymer configurations, and the applied 
forces. Stochastic OnsagerNet is shown 

to automatically generate accurate 
and interpretable thermodynamic 
models, enabling the understanding, 
prediction, and even manipulation 
of polymer behaviour. The model’s 
accuracy was further validated through 
experiments involving electrokinetic 
stretching of DNA molecules in a 
microfluidic channel. The results 
showed that the learned model not 
only captures the heterogeneity in the 
stretching dynamics but also accounts 
for the fluctuations around the 
stretched state.

Discussion

The method’s generality allows it 
to be applied to a wide range of 
stochastic and dissipative dynamical 
processes, such as the self-healing of 
materials, the relaxation of magnetic 
systems, and the spread of diseases. 
Its core strength lies in providing a 
systematic framework for analysing 
the macroscopic behaviour of complex 
dynamics. However, the method 
does have limitations. It is specifically 
designed for noisy, dissipative systems 
that can be modelled using Onsager-
type dynamical equations, which 
restricts its effectiveness in capturing 
other types of dynamics, such as chaotic 
or highly excited systems. Moreover, 
the approach depends heavily on large, 
high-quality observational datasets 
for training, which necessitates high-
throughput experiments, like those 
developed for polymer stretching 
dynamics.

An exciting future prospect for the 
method is to “close the loop” between 
experimentation, learning, and control. 
This would involve developing data-
driven strategies for manipulating the 
learned macroscopic dynamics, such as 
adjusting external conditions to alter 
polymer behaviour. By doing so, the 
method could enable more efficient 
and targeted data collection while also 
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supporting real-world applications that 
require fast and accurate control of 
macroscopic behaviours.

For more details, please visit: 
https://blog.nus.edu.sg/qianxiaoli/ 
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Figure 1: Overall workflow of Stochastic OnsagerNet. Given a complex dynamical process described by microscopic 
coordinates X, we are interested in the dynamics of macroscopic coordinates Z*. This requires the construction of closure 
coordinates Ẑ and a closed equation for the combined reduced coordinates Z = (Z*, Ẑ). The classical ideal-gas law is one 
illustration of this process (top panel); for general non-equilibrium, dynamic systems such as polymers (bottom panel), 
carrying out this workflow from theory is challenging. Our method (middle panel) simultaneously constructs the closure 
coordinates and models their temporal evolution using a combination of the generalized Onsager principle and deep 
learning. [Credit: Nature Computational Science]
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ImFCSNet: A new framework for 
spatiotemporal imaging 
Analysing biomolecular processes through deep learning is faster while requiring less data

Introduction

Imaging is an indispensable building 
block of modern science. Since 
the introduction of the compound 
microscope, imaging has become 
a standard tool in many scientists’ 
arsenals. The ability to see beyond 
the magnification limit of the naked 
eye has been key to unlocking many 
insights that would have otherwise 
been inaccessible.
 
Most early microscopy studies focused 
on the analysis of structure. However, 
there is only so much information you 
can glean from a single static image. 
One notable finding was in 1827, when 
botanist Robert Brown used microscopy 
to observe how pollen moves randomly 
while in water, something that was 
only possible with observation through 
time. This then formed the basis of 
Albert Einstein’s seminal work on the 
Brownian diffusion.
 
In the modern day, technological 
advances in camera and detector 
technology as well as lasers as 
illumination sources, provide high 
spatiotemporal resolution at single-
molecule sensitivity in microscopy. 
By observing systems at high 
spatiotemporal resolution over long 
times we gain information on structure 
and dynamics over many scales in a 
single measurement.
 
Similarly, the field of deep learning 
has gone through significant 
transformations over the past 80-
odd years. Starting from the basic 
McCulloch-Pitts model of a single 
neuron, computer scientists have 
designed digital neural networks, which 
are capable of “learning” to master 
a variety of different tasks through 
an iterative process called “training”. 
While early neural network models 
were constrained by the computational 
limitations of the early 1980s, the 

same theoretical underpinnings have 
stood the test of time, leading to the 
artificial intelligence boom of the 
2020s, with powerful models such as 
OpenAI’s GPT and Google’s Gemini 
series becoming synonymous with 
“artificial intelligence” in the public 
consciousness. 
 
One particularly interesting subset of 
deep learning is computer vision, which 
can trace its roots directly to the field 
of imaging. We have come a long way 
from the basic character recognition 
LeNet of 1989, with modern models 
showing strong capabilities in visual 
understanding. 
 
In this article, we describe our 
attempts to incorporate deep learning 
approaches into our imaging pipelines, 
granting us more insights from image 
time series than would be possible 
with static images. 

Fluorescence correlation spectroscopy

Our work primarily focuses on 
fluorescence correlation spectroscopy 
(FCS), a mature, widely used statistical 
analysis tool designed to explain 
underlying molecular processes or 
interactions within a sample with 
single molecule sensitivity.  
 
Originally, FCS was conducted as 
single-point experiments, but modern 
cameras with fast frame capture 
capabilities have made it possible to do 
Imaging FCS, which extends classical 
point-based FCS to cover larger 
observation areas, allowing us to probe 
how molecular dynamics change over 
biologically relevant spatial scales. 
 
FCS has been proven to be capable 
of extracting information from signal 
fluctuations that otherwise appear like 
noise. As shown by Manfred Eigen in 
his Nobel Prize lecture, the fluctuations 
from equilibrium present in any 

measurement contain information 
about the underlying system. In the 
context of FCS, this information is 
represented as the autocorrelation 
function (ACF), which describes the 
similarity (the titular “correlation”) 
across different lag times. The ACF 
can then be fitted to a mathematically 
derived fit function to determine 
characteristics of the system, such as 
the number of fluorescently labelled 
particles passing through the volume, 
the diffusion coefficient, or speeds at 
which these particles are moving. 
 
However, there are limitations to 
the ACF-based fitting approach. As 
a statistical fitting process, the FCS 
measurements need to be sufficiently 
long to obtain robust estimates of the 
underlying dynamics. In addition, FCS 
requires as an input, a model of the 
molecular process to be observed. 
However, in many cases for these 
models, no analytic fitting function can 
be derived.

ImFCSNet

In our recent work, we show that 
deep learning can serve as a viable 
alternative for Imaging FCS data fitting. 
Imaging FCS works with video-like 
data, making it inherently compatible 
with computer vision techniques. We 
designed the ImFCSNet architecture, 
a custom convolutional neural 
network (CNN) architecture designed 
specifically for investigating the 
diffusion characteristics in Imaging 
FCS data [1]. Through experimental 
verification, we find that ImFCSNet 
requires less data, is robust to 
defocusing, and is magnitudes faster 
than conventional FCS fitting. 

Here, we describe three notable 
aspects of ImFCSNet’s design, and how 
we believe they can help advance the 
field of FCS imaging. 
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First, ImFCSNet is trained end-to-
end with no intermediate data 
processing steps. CNNs are capable 
of learning complex, hierarchical 
mappings between the input data 
and the provided training labels. 
With ImFCSNet, we use simulations 
as a source of training data. This 
circumvents the data-hungry nature 
of deep learning, while also giving us 
labels that are verifiably true. Unlike 
FCS, we skip the ACF representation, 
and train to directly extract the 
underlying target parameters directly 
from the raw input data. This allows 
ImFCSNet to sidestep the limitations 
of ACF fitting with regards to minimum 
measurement time, and the fit 
model dependence, and unlocks the 
possibilities of understanding how 
molecular dynamics evolve at shorter 
time scales. 
 
Next, ImFCSNet is extensible. While our 
initial targets with ImFCSNet revolved 

around the diffusion coefficient, we can 
leverage the flexibility of deep learning 
to extend this to further applications. 
Our recent work shows that the 
same ImFCSNet architecture initially 
proposed for determining the diffusion 
coefficient can be adapted to predict 
the number of particles with minimal 
changes to the training protocol, which 
is compelling evidence that the same 
“recipe” is versatile enough to be 
applied to different tasks [2]. 
 
Finally, ImFCSNet is made to be easy 
to use and adapt. It does not matter 
if a tool is proven to be superior if it 
is inaccessible. While CNN training 
is generally a complex web of 
abstractions and design decisions, ease 
of use should always be considered. 
This is particularly true with ImFCSNet, 
as simulation parameters vary across 
different acquisition setups. We take 
inspiration from widely used deep 
learning frameworks and focus on 

accessibility with our codebase. In 
theory, any user should be able to train 
and use their own custom ImFCSNet 
tuned for their system, even without 
deep learning expertise. 

Future work

While ImFCSNet has proven to be 
a viable tool, there is still work to be 
done. FCS is capable of extracting 
much more information beyond the 
diffusion coefficient and concentration, 
and ImFCSNet still has some ways 
to go before it can fully replicate 
FCS’ capabilities, let alone surpass it. 
However, our work shows that deep 
learning can supplement Imaging FCS, 
opening the door to new possibilities 
in data analysis.

For more details, please visit: 
https://www.dbs.nus.edu.sg/staffs/
thorsten-wohland/ 
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Figure 1: Workflow for the ImFCSNet, which can efficiently extract molecular dynamics parameters from raw imaging data.
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More black holes, less black boxes
Statistically principled learning for inverse problems in gravitational-wave astronomy

Background

Astronomy is the modern embodiment 
of humankind’s enduring fascination 
with the Universe. Over the past 
century, technological advances 
have expanded our view of the 
cosmos (from visible light to the 
entire electromagnetic spectrum), 
and with it the range and detail of 
our astronomical observations. More 
recently, however, the historic 2015 
detection of gravitational waves (GWs) 
from two merging black holes has 
opened up an entirely different channel 
through which to study the Universe.

The nascent field of GW astronomy 
allows us to observe phenomena 
we would otherwise be blind to, 
and provides exciting new insights 
into others that are already visible. 
GW signals from binary systems of 
black holes or neutron stars are now 
routinely detected by ground-based 
interferometers such as LIGO in the 
kilohertz frequency band. Pulsar timing 
arrays are also poised to discover 
nanohertz signals from supermassive 
black holes, while space-based 
observatories such as the ESA-NASA 
mission LISA will cover the source-rich 
millihertz range in the next decade.

An important aspect of GW astronomy 
is solving inverse problems, i.e., 
determining the properties of 
astrophysical sources from their GW 
signals. This involves constructing 
complex forward models for possible 
signals by solving the equations of 
general relativity, as well as using 
these forward models in data-analysis 
algorithms to extract and characterise 
actual signals in detector data. Many 
challenges hinder both such tasks, 
which calls for researchers to devise 
novel computational and statistical 
techniques in their solutions.

Machine learning (ML) is increasingly 

used to confront said challenges – 
although it faces unique hurdles in 
this field, such as noise-dominated 
data and the need for high precision 
in modelling. To establish the scientific 
viability of ML methods in solving GW 
inverse problems, it is also crucial 
to clarify how they relate to the 
existing theoretical and computational 
framework for GW data analysis, 
which is already rigorously founded on 
well-understood principles from the 
broader fields of signal processing and 
Bayesian inference. 

The status of ML in GW astronomy

ML (in particular deep learning) 
has had a broad impact on the field 
of GW astronomy. Since a triad of 
initial papers from 2018 exploring 
the usage of deep learning in GW 
data analysis, there has been an 
exponential explosion of literature on 
the topic. Early work dealt only with 
the extraction and classification of GW 
signals in data. However, despite the 
considerable attention paid to such 
techniques, most are still not accepted 
as standard in GW astronomy – being 
either statistically unprincipled, or 
uncompetitive, or both.

In 2019, my collaborators and I were 
among the first to showcase the 
viability of deep learning for both 
aspects of the GW inverse problem: 
forward modelling [1] and Bayesian 
inference [2]. Our techniques explicitly 
augment or emulate the existing GW 
analysis framework, and are thus more 
defensible on rigour and principle. 
This stands in contrast to much of the 
literature on deep learning in science, 
which often adopts a “black-box” 
approach to learning that prioritises 
fast and accurate estimation or 
prediction – but with less regard for 
the quantification of uncertainty, or the 
statistical significance of conclusions.

Forward modelling: Learning to 
describe GW signals

The most common sources for GW 
astronomy involve the gradual inward 
spiralling and eventual merger of a 
binary system whose components 
are extremely massive and dense 
objects, e.g., black holes. Such systems 
are strongly gravitating with highly 
non-linear dynamics, and can only 
be modelled accurately through the 
difficult task of solving Einstein’s 
equations of general relativity. Forward 
models for the predicted GW signals 
(“waveforms”) from these sources 
then typically contain numerical 
calculations that are highly precise 
but computationally expensive. This 
is at odds with the nature of the 
data-analysis algorithms used in GW 
astronomy, which rely heavily on Monte 
Carlo simulations of waveforms – i.e., 
generating them in bulk and rapidly.

Fast but sufficiently accurate fits 
to waveform calculations are thus 
often required, in order to construct 
approximate forward models that can 
feasibly be used in data analysis. In 
[1], we were the first to harness the 
powerful fitting capability of deep 
neural networks for this purpose, 
by combining them with a classical 
dimensional-reduction technique that 
has been used in GW modelling to good 
effect. We trained a neural network to 
reproduce the reduced representation 
of waveforms from a simple class of 
binary source, and verified that it 
could attain comparable speed and 
accuracy to other (non-learning) fitting 
algorithms. This work showed that 
neural networks are a viable option 
for fitting tasks in GW modelling, and 
posited that they would scale well to 
problems of higher dimensionality and 
complexity.

Bayesian inference: Learning about 
GW signals in data
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If a GW signal is present in detector 
data, the astrophysical parameters 
of its source can be inferred through 
posterior estimation – the mapping 
out of the posterior probability 
distribution for the parameters. In GW 
astronomy, this task must typically 
be performed with random sampling 
algorithms such as Markov chain 
Monte Carlo methods. Unfortunately, 
the posterior in GW data analysis is 
notoriously difficult to sample from, 
as it has probability tails that are both 

“heavy” (not exponentially bounded) 
and highly multi-modal. Furthermore, 
the raw cost of evaluating the forward 
model at each iteration of the sampling 
algorithm can also be a computational 
bottleneck. Both factors mean that 
Bayesian inference for even just a 
single GW source is a time-consuming 
endeavour, often taking hours to days.

One promising way that ML can 
help is simulation-based inference. 
This strategy “amortises” the cost of 
inference by training a model on a 

large set of simulated GW data streams 
(signal plus noise), in a way that it can 
later predict the posterior for an actual 
data stream almost instantly. In [2], we 
introduced such methods to GW data 
analysis by training a neural network 
to directly output the posterior, given 
some data containing a signal. The 
result also highlighted for the first 
time that neural networks could be 
used in a statistically principled way 
within the canonical framework of 
GW data analysis. Alongside two 
other independent research groups, 
our early work laid the foundations 
for the ongoing interest in applying 
such techniques to completely front-
load the computational cost of GW 
inference.

Future directions

While our research has demonstrated 
the viability of using ML and deep 
learning for scientific inverse problems 
in GW astronomy, much remains to be 
done before such methods become 
standard in the field. An important next 
step is to improve the efficacy of ML 
in fitting forward models, specifically 
by investigating the impact of feature 
engineering and architecture design 
in deep neural networks. Another 
direction is to use ML to perform 
posterior estimation not just efficiently, 
but also in ways that are robust against 
potential errors in forward models. The 
development of methods along these 
lines will encourage a wider acceptance 
and uptake of ML in GW astronomy, and 
can even help to address some of the 
greater data-analysis challenges posed 
by next-generation GW detectors.

For more details, please visit: 
https://www.physics.nus.edu.sg/
faculty/chua-alvin-jk/
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Figure 1: In the archetypal inverse problem for gravitational-wave astronomy, 
Einstein’s equations are used to model an astrophysical binary (top) and to predict 
its gravitational-wave signal (middle; black curve), which is then compared against 
detector data (middle; coloured curves) to infer source parameters such as the 
binary masses (bottom).
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Decoding the complex patterns driving 
scientific breakthroughs 
Harnessing machine learning to decode disorder, complexity and adaptability in science

Why should scientists care about 
machine learning?

Nature’s creativity is astonishing, and 
yet it all stems from a relatively small set 
of fundamental laws and mechanisms, 
some already discovered and others 
still waiting to be uncovered. The pace 
of these discoveries has quickened 
thanks to advances in machine learning 
(ML), improved scientific instruments, 
and the explosion of high-quality 
data. Together, these elements are 
crystallising into a specialised kind of 
discovery-AI (artificial intelligence) 
designed to accelerate scientific 
breakthroughs. Unlike other forms 
of AI, which may be generalised or 
focused on tasks like image recognition, 
this discovery-AI is deeply grounded in 
precise, logical knowledge built up over 
centuries of scientific investigation. This 
makes it a unique opportunity to blend 
data, models, and algorithms in a way 
that could reshape how we think about 
AI. 

This article explains how discovery-
AI can help us wrestle (even tame) 
a “three-headed beast” in scientific 
discovery.

The temperature-driven “three-
headed beast” that rules our universe: 
Disorder, complexity, and adaptability

Disorder is a fundamental aspect of 
diversity and creativity. While some 
of us view disorder as a nuisance in 
our daily lives, disorder is crucial for 
the richness and complexity in our 
natural world. For instance, life evolved 
from the diverse modifications of and 
interactions among molecular building 
blocks. Without this inherent disorder, 
life would not adapt to changing 
environments, a key ingredient in 
evolution.

In materials science, controlled disorder 
creates complexity that enables new 

properties. Pure, perfect crystals lack 
the functionalities needed in modern 
electronics. Introducing disorder, such 
as adding different atoms or creating 
irregularities manipulates electricity 
and energy flow, enabling the 
development of devices like transistors 
and solar cells. This controlled disorder 
allows for adaptable and efficient 
materials.

Disorder is also an integral aspect of 
complexity and adaptability in natural 
ecosystems. Species interact with some 
unpredictability and diversity. This 
disorder ensures no two ecosystems 
are alike, fostering biodiversity and 
allowing ecosystems to thrive despite 
changing conditions.

Scientists typically measure disorder 
using the statistical concept of 
entropy. You can think of entropy as 
“accessible disorder”. Disorder is a 
source of complexity and diversity in 
natural and human-made systems. 
It underpins adaptability, creativity, 
and resilience. Entropy, though often 
seen as a hindrance, is essential to 
system evolution, offering endless 
opportunities for discovery and 
innovation.

More is different… But how?

Novel phenomena often emerge from 
the complex interactions of many 
simple elements. In physics, this idea is 
sometimes summed up by the phrase, 
“more is different”. It means that when 
you look at a whole system, like a flock 
of birds or a chemical reaction, new 
behaviours emerge that you would not 
predict just by studying individual parts.

Complexity in natural systems arises 
when many interactions happen 
simultaneously. These interactions are 
not simple or straightforward, which 
makes it challenging to capture the 
system’s behaviour with traditional 

mathematical models.

For instance, a group of interacting 
particles or cells becomes 
overwhelmingly complex with dozens 
of them, each influencing the others 
non-linearly and unpredictably. It is 
like trying to predict how a group of 
people will behave based on just a 
few conversations—they might share 
information, react to one another, or 
influence each other indirectly.

This intermediate scale of interactions is 
where complexity thrives. The system is 
not just a collection of simple parts, nor 
is it a smooth, easily averaged whole. 
The result is a level of unpredictability 
that is difficult to describe succinctly 
with equations alone. Traditional 
methods may struggle because they 
rely on approximations that smooth out 
the details where the true complexity 
lies.

Powerfully, ML now routinely extracts 
curious patterns in complex, adaptive 
systems that humans used to dismiss as 
disordered. ML excels at handling vast 
amounts of data and detecting patterns 
in non-linear and non-reciprocal 
interactions. By learning directly from 
the data, ML models identify subtle, 
complex relationships that drive system 
behaviour, offering insights where 
conventional approaches fail. It enables 
us to navigate system complexity, 
finding structure and predictability 
in otherwise chaotic and disordered 
systems.

Discovering emergent phenomena 
from motif hierarchies in complex 
materials

To grasp how machine learning aids in 
understanding complex materials, let 
us consider language. Natural language 
exhibits patterns, such as word 
combinations like “machine learning” 
or “natural language”. Linguists call 
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these patterns n-grams (where n counts 
the number of words in a sequence), 
which help grasp basic grammar 
rules. Despite their structured nature, 
language remains flexible, allowing for 
word rearrangements, synonyms, and 
meaningful sentence creation. This 
diversity adheres to language rules 
while fostering creativity and variation.

In materials science, atomic 
arrangements resemble “motifs”, this is 
similar to words in language. Transition 
metal dichalcogenides, catalysts like 
polyoxometalates [1], and piezoelectric 
materials [2](see Figure 1) possess 
repeating atomic structures that form 
motifs. These motifs can combine 
and interact, creating a hierarchy 
of arrangements. Machine learning 
models can identify these atomic 
motifs, revealing their interactions and 
variations.

For instance, a motif might involve 
a specific metal atom arrangement 
surrounded by oxygen, repeating in 
polyoxometalates. Depending on these 
motif arrangements and interactions, 
the material exhibits diverse properties, 
akin to how rearranging words changes 
the meaning of a sentence. By decoding 

these patterns and hierarchies, we gain 
insights into the local atomic structure 
and the material’s “story,” enabling 
the design of tailored materials, such 
as improved catalysts or efficient 
electronic devices.

Emergent phenomena in a hierarchy 
of spatiotemporal motifs in self-
organised cellular systems

Imagine a busy cityscape with cars, 
people, and activities happening all at 
once. Without paying much attention 
to the details, this scene may look 
chaotic. But if you look closely, you will 
notice patterns such as how people 
move through streets, gather at specific 
times, or form queues. There are 
hidden rules and behaviours that bring 
order to what seems like chaos.

Cells in our body work in a similar 
way, but instead of observing cars and 
people, we are looking at the shapes 
and movements of biological cells. 
These cells often interact, cluster, 
and rearrange themselves, creating 
dynamic patterns. The challenge in 
studying this is that we cannot always 
measure the chemical signals or 
understand the exact “intentions” of 

each cell. Instead, we mostly observe 
their morphology—their shapes—and 
how they move and change over time. 
From these movements and changes, 
we must infer their functions and 
underlying mechanisms, often without 
knowing the specific interactions 
happening inside or between the cells.

Machine learning helps us decode these 
spatiotemporal patterns by identifying 
recurring shapes, movements, and 
arrangements of cells. Think of it like 
learning a language, where the shape 
and motion of each cell are like words, 
and how they change or interact over 
time forms a kind of grammar. By 
analysing this “language,” ML can help 
us infer what might be driving these 
behaviours, even if we do not have 
direct access to the chemical signals or 
interactions (see Figure 2).

Uncovering these spatiotemporal 
motifs can lead to breakthroughs in our 
understanding of cell behaviour, which 
is crucial for fields like developmental 
biology, cancer research, and tissue 
engineering. Recognising patterns in 
a city helps improve traffic flow, and 
similarly, understanding how cells 
change shape and interact can give 
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Figure 1: Hierarchy of structural motifs learned from a piezoelectric material – like an n-gram language model. (A) The 
structural motifs along a domain boundary can sometimes be reduced into simple shapes such as hexagons and triangles. 
(B) These motifs can be paired with various rules as 2-motifs. (C) Three-motifs can be extended as 3-motifs, abstracted here 
as a transition matrix where different 2-motifs (rows) continue into different 3-motifs (columns). (D) This transition matrix 
can be applied repeatedly, like the odds of a 6-sided dice, to generate random domain boundaries which match those 
observed experimentally. Figure taken from [2].
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us new insights into how to influence 
or control these processes, leading to 
better therapies and treatments.

Interpretable machine learning fuels 
our collective curiosities

Humans have always been curious 
about the world, driven by a desire 

to explore, understand, and explain 
how things work. Scientific research, 
in broad strokes, professionalises 
this curiosity. This curiosity has led to 
powerful discoveries about regularities 
and irregularities in our world: from 
deep connections and abstract patterns 
in mathematics, to the laws of physics 
that describe the origin of forces and 

particles, to the grip of thermodynamics 
on our chemistry, to the inner workings 
of cells.

Science has always been driven by data 
from experimentation. ML is now used 
alongside traditional methods to help 
make sense of the vast amounts of data 
produced by modern instrumentation. 
ML allows computers to learn from data 
and find patterns that humans simply 
cannot fathom. This is especially useful 
in scientific research, where complex 
systems and interactions abound. 

For discovery-AI to transform science, 
its complex ML models need to be 
interpretable, so that they can explain 
what they discover in a way that 
humans understand. This is not just 
about building smarter tools—it is 
about figuring out how AI can help us 
discover new scientific principles that 
are beyond our imaginations.

For more details, please visit: 
https://www.dbs.nus.edu.sg/staffs/
duane-loh/
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Figure 2: Learning the language of complex interactions between biological cells 
(image to be read from bottom to top). Cells with complex interaction rules, 
abstracted here as dynamically moving particles, often form dense nearest-
neighbour (NN) motifs (5-NN, 6-NN, 7-NN, etc.). These NN motifs, in turn, occur 
in various motif clusters, whose behaviours determine whether they eventually 
grow into cellular aggregates, rings, or larger bands that spontaneously migrate in 
persistent directions. Figure by LIM Ying Chen.



Statistician in geometry: A journey, lonely 
travelled, to a low-dimensional world 
Unveiling the intricate dance between statistics and geometry to transform data analysis

Introduction

In the immense landscape of data 
that surrounds us, understanding the 
role of dimensions—attributes that 
describe each data point—is essential. 
As technology evolves, we increasingly 
encounter datasets with hundreds or 
even tens of thousands of dimensions, 
presenting both opportunities for 
deeper insights and significant 
analytical challenges. This complexity 
necessitates dimensionality reduction, 
which simplifies data by transforming 
it from a high-dimensional space to a 
lower-dimensional one, preserving key 
properties. This process not only aids 
in visualising and interpreting data but 
also reduces storage and computational 
demands, and importantly, it helps 
eliminate noise and irrelevant features, 
clarifying the insights derived from the 
data.

For years, statistics has been deeply 
rooted in linearity, which often falls 
short in capturing the complex nature 
of real-world data. Mathematically, 
central limit theorems on non-linear 
spaces can exhibit unusual asymptotics 
depending on the underlying geometry, 
such as when mass near the cut locus 
of the population mean pulls on sample 
means, causing them to converge more 
slowly than expected. The interplay 
between the data distribution and 
its underlying geometry gives rise to 
central limit theorems that reveal two 
intriguing phenomena: “smeariness” 
(slow convergence) and “stickiness” 
(fast convergence). This behaviour 
reflects both aspects of the curvature 
and the measure, therefore thus 
defines a much higher ceiling for 
researchers to pursue, in a fundamental 
way. Our team, working with the world-
renowned geometer, S.-T YAU and his 
institute, aims to push the geometry-
aware statistics research boundary 
to a new level beyond linearity. We 
specialise in nonlinear dimensionality 

reduction, designed to address complex 
relationships between dimensions 
that linear methods like principal 
component analysis fail to resolve. 
These nonlinear techniques excel at 
deciphering complex patterns, allowing 
us to explore the inherent geometry 
and topology of data hidden within 
high-dimensional spaces and reveal 
insights that traditional approaches 
might miss.

As the field of Artificial Intelligence 
evolves, our ability to process vast 
amounts of data has improved, yet 
challenges from extreme dimensionality 
persist. Machine learning models, 
heavily reliant on extensive large 
models and substantial computational 
resources, are increasingly becoming 
resource constrained. Our approach, 
which emphasises nonlinear structures 
in high-dimensional data, presents 
a promising solution. By integrating 
advanced mathematical strategies, 
we aim to reduce dependency on 
extensive resources and enhance the 
efficiency of data processing, offering a 
more sustainable path forward in high 
dimensional data analysis.

Learning the data manifold

From the perspective of the interplay 
between geometry and statistics, high-
dimensional data often cluster around 
simpler, hidden structures termed 
“manifolds”, and understanding this 
interplay between geometry and 
statistics is crucial for deciphering 
complex data. Manifold learning, 
which can be categorised into manifold 
embedding, manifold denoising, and 
manifold fitting, serves this purpose. 
Manifold embedding techniques 
reduce high-dimensional datasets to 
lower-dimensional forms, preserving 
essential relationships like distances 
between data points. Manifold 
denoising cleans the data by removing 
outliers that deviate from the expected 

manifold configuration. However, these 
methods often fail to capture the full 
geometric details. Our focus, manifold 
fitting, reconstructs a smooth manifold 
that accurately reflects the underlying 
low-dimensional structure, capturing 
both the geometric and topological 
properties of the data for a more 
comprehensive understanding.

Yao’s original work starts from 
the introduction of the concept 
called “principal flow”, a non-linear 
generalisation of principal component 
analysis on manifolds. This innovation 
uses a one-dimensional smooth curve 
to trace the primary variations within 
the data, thereby increasing the 
accuracy and efficiency of nonlinear 
data analysis.  He further invented 
new concepts such as “principal sub-
manifold” and “fixed boundary flow” 
by combining differential geometry 
with modern statistics to deal with data 
that has higher latent dimension or that 
have given boundaries.

To address the ubiquitous noise in 
real data more effectively, the group 
has developed a series of state-of-the-
art fitting methods (Yao et al. (2024, 
a,b)) to study the latent manifold. For 
each sample point, we first identify 
the main direction of the noise and 
then “push” the sample towards the 
latent manifold along this direction. 
This technique leverages the local 
geometric structure of each sample, 
which has been theoretically proven 
to effectively reduce noise and simplify 
data representation through nonlinear 
dimensionality reduction. Crucially, 
as all sample points remain in their 
original space, this method can be 
seamlessly integrated into complex 
workflows, such as neural networks and 
bioinformatics pipelines, enhancing 
their efficiency and accuracy.

Explore the world of genes with 
manifold
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Single-cell RNA sequencing (scRNA-
seq) has revolutionised genomic 
research by providing a detailed view 
of the genetic makeup of individual 
cells, enhancing our understanding 
of cellular interactions, diversity, and 
development. This technology traces 
variations in gene expression, shedding 
light on diseases such as diabetes, 
Alzheimer’s disease, and cancer, and 
supports advances in multi-omics 
analysis and spatial transcriptomics. 
However, scRNA-seq faces significant 
challenges, including biological noise 
from natural cellular variability and 
measurement errors associated with 

sequencing techniques. These issues 
can hinder the accurate interpretation 
of biological data.

To tackle these challenges, we 
developed a framework that utilises 
a manifold fitting method to analyze 
scRNA-seq data. This process begins 
with a data transformation to enhance 
the signal-to-noise ratio, reducing gene 
expression variability and correcting 
for batch effects. An unsupervised 
approach is used to adaptively select 
the most suitable method for each 
dataset. A manifold fitting algorithm 
employing a shared nearest neighbour 
metric then efficiently defines data 

neighbourhoods, streamlining the 
process and expediting data handling. 
This reduces overlaps within groups and 
enhances separation between them, 
facilitating more effective clustering.

Our framework applies a variety of fast 
clustering algorithms tailored to the 
complex nature of scRNA-seq datasets, 
selecting the optimal clustering by 
comparing the similarity of cell types 
within and between clusters for precise 
cellular function and type analysis. 
Additionally, this method adeptly 
reveals the hidden low-dimensional 
structure of the data, effectively 
countering both technical variability 
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Figure 1: Building a Cell Atlas Using the Manifold Fitting Framework: Raw data incorporating manifold-based information 
undergoes clustering through a graph-based method. This process organizes cells into a tree-structured classification, 
facilitating the identification of novel cell types and key genes responsible for cell differentiation.
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and biological noise. Numerous 
experiments have demonstrated that 
our approach not only more effectively 
recovers distorted RNA expression 
data but also enhances clustering 
capabilities beyond existing techniques, 
significantly improving the depth and 
accuracy of single-cell genomic analysis. 
Furthermore, our method can identify 
potential subclasses of cells, offering 
new insights for ongoing scientific 
exploration.

We are also developing another 
workflow based on manifold fitting that 
will revolutionise cell type identification 
and cell atlas construction. This new 
workflow promises to provide new 
insights into cellular function and 
organisation, potentially setting new 
standards in the field. I have been 

scheduled to deliver a 60-minute 
plenary lecture on this progress at 
the incoming International Congress 
of Chinese Mathematicians (ICCM) in 
Shanghai in 2025.

The next steps

Having established a robust theoretical 
foundation, we have demonstrated 
the effectiveness of manifold fitting 
in harnessing the low-dimensional 
structures hidden within data to 
enhance its analytical capabilities. 
This technique has been successfully 
integrated with neural networks and 
scRNA-seq, showcasing its efficacy in 
complex genomic studies.

Looking forward, we are exploring the 
application of manifold fitting to human 

metabolomics data, aiming to advance 
precision medicine by deepening our 
understanding of metabolic processes 
and their individual variations. 
Additionally, since manifold fitting can 
be seamlessly integrated as a module 
into various existing workflows, we 
plan to extend its application across 
diverse fields that handle large, high-
dimensional data sets. This expansion 
is expected to significantly boost 
the analytical capabilities of current 
models and reduce the computational 
resources required, thereby driving 
more efficient and sustainable progress 
across multiple scientific domains.

For more details, please visit: 
https://zhigang-yao.github.io/
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