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On the cover: Machine learning is used to recover the three-dimensional (3D) structure of small and fragile biomolecular particles. 
This schematic shows how it classifies many noisy and incomplete two-dimensional measurements (gray tiles clustered by 
orientation), each of which comes from a single particle in some random view, into a single 3D structure. Similar methods can also 
classify structural differences between different particles. [Image credit: Prof Duane Loh]



Making Microscopes “think”
Building the “visual cortex” for high-resolution microscopy

Seeing is believing, and it can be a 
problem

Optical microscopy grew from our 
abilities to recognise visual features. 
Before photography (1826), it was 
the eyes, brain, and hands of the 
microscopist that transferred images 
he/she saw through the microscope’s 
lenses onto paper. These drawings 
recorded the discovery of cells (1665) 
and bacteria (1676), which forever 
changed biology and medicine. 
Despite its power and expressiveness, 
such human-guided microscopy was 
qualitative and subjective. There 
are obvious downsides to relying on 
human vision: simple examples can 
prove that our visual system is terrible 
with quantitation (see Figure 1). Unlike 
a camera with long exposure imaging 
capability, you might not be able to see 
details in a dimly lit street even if you 
stared long and hard at it. One might 
blame this on the fact that our vision is 
not quantitative; hence our brains do 
not “add” disparate images that we see 
together to produce less noisy “long 
exposure” images. Put differently, our 
eyes can see but our brains measure 
poorly. 

From seeing to measuring to re-
creating vision

Over the last millenia, “seeing” 
in microscopy gradually became 
measuring. This is tightly coupled 
with a strong desire to create a form 
of artificial visual intelligence, which 
was impractical until computers 
became affordable and prevalent. The 
algorithms that formed this artificial 
intelligence learned to automatically 
identify features that we sought. 

Soon they outdid us: they memorised 
differences between features on images 
far more precisely than we could, 
leading the way to complex image 
“arithmetic”, nuanced segmentation, 
subtle feature detection, and statistical 
inference of hidden parameters.

In a literal sense, microscopy has 
become a recreation of our eyes 
(lenses), retina (detector), and visual 
cortex (fast algorithms), whose 
combined abilities extend beyond 
our biologically evolved vision. With 
this, we gained a unique window 
into the micrometre-size world. 
However, the further advancement 
into the nanometre-size world requires 
rethinking and reinvention.

Nanometer-scale microscopy with 
“just enough” x-rays and electrons

The imaging of nanometer-sized (10-

9m) features is far trickier than optical 
microscopy of micrometre-sized (10-6m) 
ones. The physics of image formation 
demands imaging with probes of 
shorter wavelengths to resolve smaller 
features. For light microscopy, this 
means going to higher energies (e.g. 
x-rays) to resolve atoms. For electron 
microscopy, this means using high 
energy electrons as probes (e.g. 10-
100 keV).  The technology for atomic-
resolution imaging of biomolecules 
and nanoparticles has advanced 
tremendously over the last century. 
Much of this advancement revolves 
around brighter and more coherent 

electron and x-ray sources. With these 
sources, we are now able to see atoms, 
molecules, and nanomachines, and 
infer how they self-organise [1]. But 
whether you like it or not, modern 
high-resolution imaging of nanometre-
size objects almost always contains a 
trail of computational algorithm(s).

Most electrons or x-ray photons that 
“strike” any particular atom merely pass 
through it. To “know” if an atom was in 
the path of electrons or x-rays requires 
sending enough of either through 
the atom. Only from averaging the 
results of sufficient numbers/amounts 
of electron-atom or x-ray-atom 
interrogations can we determine the 
number and types of atoms. However, 
if you send too many electrons or x-rays 
through an atom, you will displace 
and/ or ionise it and its neighbouring 
atoms. In straightforward cases, this 
manifests as a loss of resolution; in 
trickier scenarios, you will not be able 
to tell if the features you see are due 
to the sample or induced by the beam.

Particle-wave duality: interact like a 
wave, detected like a particle

To understand how we can interpret 
electron or x-ray images, we need some 
basics about the image-formation 
mechanism. Quantum mechanics 
tell us that imaging electrons in a 
transmission electron microscope 
propagate from the electron gun as 
a wavefield down the microscope 
column. This wave-like description of a 
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Figure 1: Do the middle squares in each 
3x3 block have the same shade of gray?

Figure 2: Wavefunctions of electrons and x-ray photons interact with samples.
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single electron is called a wavefunction. 
The description for x-ray microscopy is 
similar. It is like a “stadium wave” of 
enthusiastic sports fans. 

As an electron wavefunction passes 
through a nanometre-size sample, the 
features of the sample are encoded 
in the subtle phase shifts that they 
impart onto this incident electron 
wavefunction (see Figure 2). In a typical 
transmission electron microscope, 
recovering these tiny spatial variations 
in weak phase shifts imparted on the 
electron wavefunction will reveal 
the sample’s internal structure (i.e. 
density distribution). Mathematically, 
this is equivalent to recovering the 
complex-valued exit wavefunction. 
These tiny spatial variations on the 
exit wavefunction are then magnified, 
either using optics or just from 
diffraction in empty space,  and 
intercepted by a detector. 

The most advanced detectors 
only detect the arriving electron 
wavefunctions as particles localised 
somewhere in space. With a 
smattering of these arriving electrons, 
we have basically only half of the 
information needed to recover the 
exit wavefunction. More precisely, we 
only detect the probabilities of the 
wavefunction and not the critically 
missing phases.

Exploratory microscopes learn 
statistical reasoning

Here is where machine learning (ML) 
can help. ML models can learn prior 
knowledge about how general samples 
interact with wavefunctions, how these 
wavefunctions propagate through the 
optical elements, and the detection 
statistics of the electrons/ photons. 

Using a ML framework, we can efficiently 
guide the search for the structures 
that can best explain a large body of 
observations on the detector. This 
basic idea can be extended to infer the 
structure and flexibility of biomolecular 
machines, recover ultrafast dynamics 
of magnetic domains, efficiently “pop-
out” three-dimensional structures from 
two-dimensional projections, detect 
atomic defects that govern the efficacy 
of catalytic materials [2], and how 
nanoparticles grow from, or dissolve 
into solutions.

Microscopy is a powerful way to 
visually explore our world. Seeing and 
classifying objects for the first time 
is a potent way of understanding the 
mechanisms that organise and disorder 

our world. Exploratory microscopy, 
however, requires an ability to see, 
which is non-trivial for electron and 
x-ray microscopy. 

This type of work ushers in a new form 
of probabilistic exploratory microscopy, 
where microscopists can expect a 
visual report of the structure and 
dynamics that are most likely present in 
their sample sorted by likelihood (see 
Figure 3). Adding domain knowledge 
about samples (e.g. physics, chemistry, 
materials science, biology, etc.) can 
further enhance the functions of these 
ML-powered microscopes. With ML, we 
can teach our microscopes yet another 
thing that humans tend to have trouble 
with: statistical reasoning.
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Figure 3: How many unique symbols can you distinguish from the array of noisy 
images (top row)? By imposing prior knowledge about the measurement process, 
unsupervised machine learning algorithms can help identify similar classes of noisy 
images. Such learning becomes more challenging as the images get noisier (left 
to right column), and similar symbols that used to be correctly grouped together 
(green polygons) now become increasingly mixed/entangled (red circles). 



The science of big data and machine 
learning
Can we trust Machine Learning to help in tackling Big Data in science?
Introduction

We live in an age deluged with 
data. How we extract information, 
understand and glean insights from 
ever-growing datasets is a challenging 
task.  The volume, speed and variety 
of data accumulation present a game 
of “treasure hunting” (data mining). 
Data mining uses a broad array of 
expertise, knowledge, tools and 
methodologies to process Big Data to 
identify useful (and hidden) patterns 
and previously unseen connections, 
and to generate meaningful insights 
that enable data-driven decisions, 
sometimes within a given time frame.  
A higher level of investigation is to 
explore how Big Data can serve as a 
platform for new questions that we do 
not know we have.  From a scientific 
perspective, such a possibility is indeed 
a prerequisite for novel discoveries. To 
achieve this, we require trustworthy 
and explainable tools.

The challenges of Big Data

Ploughing through the massive data 
jungle is complicated by the form and 
quality of data.  With the myriad of 
different sources of data, it is difficult 
to link (“Are they the same?”), match 
(“Are they complementary?”), cleanse 
(“How do we separate the signal from 
the noise?”) and transform (“How 
can we recast one dataset so that it 
is compatible with another dataset?”) 
across systems.  The quality (accuracy 
and relevance) of datasets also varies 
vastly, often with poorly understood 
and/or documented errors and 
uncertainties embedded within useful 
data.  These are critical considerations 
when we use the datasets to make 
deductions and predictions.

We highlight the machine learning 
(ML) approach here.  To put it simply, 
ML is a technology that exploits 
available computing capabilities to 

mine datasets.  Through different 
“forms” (architectures) and “recipes” 
(algorithms), the computers can 
“learn” (either through hit-or-miss 
training or trial and error) and improve 
independently, without human 
intervention.  The power of depth and 
efficiency of machine learning methods 
in data exploration is the key driver for 
its adoption: ML excels at processing 
data, extracting patterns from it in a 
fraction of time a human would take, 
and producing otherwise inaccessible 
insights.

Machine learning and scientific 
discovery

Increasingly, machine learning 
techniques are being used in scientific 
investigations.  The scientific method 
dictates how we pursue investigations 
and discoveries: we formulate 
hypotheses based on observations 
and available data, build models that 
reflect the regularity and principles 
derived from past knowledge, and seek 
further verification (either through new 
experimentation and data collection, 
or simulation) and reproducibility by 
other researchers.  Such extension 
to unexplored territories serves to 
shape and refine our theories of 
understanding.
  
Using machine learning in scientific 
investigations must consider these 
constraints and steps, and many, if 
not most, of the machine learning 
algorithms so far do not meet the 
requirements.  As Judea PEARL (2012 
Turing Award winner) emphasised in a 
keynote talk (2018):

“Current machine learning systems 
operate, almost exclusively, in a 
statistical or model-free mode, which 
entails severe theoretical limits on 
their power and performance … To 
achieve human level intelligence, 
learning machines need the guidance 

of a model of reality, similar to the 
ones used in causal inference tasks.”

Another artificial intelligence (AI) 
researcher, Ali RAHIMI of Google, 
charged that machine learning 
algorithms have become a form of 
“alchemy”  at an AI conference in 
2018, and warned of the machine 
learning “culture that emphasises 
wins, most often demonstrating that a 
new method beats previous methods 
on a given task or benchmark … Yet, 
a moment of reflection recalls that 
the goal of science is not wins, but 
knowledge.”

So, can we trust machine learning 
results?  What is it that the machine is 
learning?

Recognising that data-driven machine 
learning methods are inherently data 
hungry, often hard to explain and 
generalise, it is useful to ponder what 
scientists have to bring to the table in 
this convergence of technology and 
science.  To help shape the trend of 
thought, it is helpful to give a simple 
picture of what machine learning does.  
When machine learning algorithms are 
learning, they are actually searching in 
the hypothesis space defined by the 
choice of algorithm, architecture and 
configuration.  (Think of the curve/ 
surface fitting for a set of data points 
– the hypothesis space is the space of 
all possible parameter values.)  This 
hypothesis space could be quite large 
even for a simple algorithm.  Data is 
the only guide we use to look for the 
solution.  But what if we can use our 
knowledge of the world, e.g. physics, 
together with the data to guide this 
search?  This is the idea of physics-
guided machine learning, with physical 
features incorporated into the machine 
learning algorithm, and physical 
consistency checks imposed in the 
predictions.  
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Physicists also hold dear symmetries 
and conservation laws, and they 
formulate fundamental principles upon 
which models are built and dynamics 
of physical systems are derived.  Is/ 
Are there underlying principle(s) that 
form the basis of machine learning 
algorithms?

The critical brain as a guide

Artificial neural networks are often used 
in machine and deep learning.  These 
are networks with multiple “neurons” 
in multiple layers that accept inputs 
and, through a chosen algorithm, 
make output predictions.  Training data 
are used to adjust the interlayer link 
weights so as to achieve high prediction 
accuracy.  To the extent that machine 
learning through these artificial 
neural networks mimics how human 
brains learn and make deductions 
and predictions, we can learn from 
developments in neuroscience and 
emerging understanding of how the 
brain network functions.  Here, the 
premise is that the brain evolves and 
has its synaptic strengths between 
neurons adjusted for various functions.  
The concept of “criticality” or “edge of 
chaos” is being advocated as a “final 
state” development of the human 
brain.  To put it simply, critical systems 
often exhibit optimal computational 
properties, and it has been suggested 
that criticality might have been 
selected evolutionarily as a useful 
condition of our brain system.  A critical 
brain functions optimally, enabling 
signals to propagate long distances 
without generating excessive activity. 
More relevantly, a quasi-critical brain 
stays close to criticality but adapts to 
changing conditions.
  

The quasi-critical state is sometimes 
being referred to as the edge of chaos.  
Some comments about regular and 
chaotic behaviours of dynamical 
systems (systems that change with 
time according to some prescribed 
rules/ laws) may be helpful here.
  
Linear dynamical systems are ones 
in which the cause (input) and effect 
(output) are linearly (proportionally) 
related, and they have a well-defined 
regular behaviour: the simple (small-
angle) pendulum motion and  falling of 
an apple under the earth’s gravitational 
pull are examples. Nonlinear dynamical 
systems have much more complex 
behaviour possibilities, depending on 
the system parameters.  The system 
evolves in a well-behaved and regular 
manner for a certain range of parameter 
values; but for some particular (critical) 
values, the system becomes seemingly 
chaotic (apparently random, and hence 
“unpredictable”) despite the fact that it 
is still governed by some deterministic 
evolution law.  For such systems in the 

chaotic regime, small differences in 
the “cause” can result in dramatically 
different “effects”. 
 
The insight here is that regular 
behaviour is predictable, but chaotic 
behaviour magnifies small differences 
and can have surprisingly huge 
responses to external stimuli, achieving 
maximum information processing 
capability.

A research team in the Faculty of 
Science, NUS is investigating the 
unique advantage of this “edge of 
chaos” state in the context of artificial 
neural networks.  In particular, we 
study in detail how this concept 
influences the training processes and 
performance of various neural network 
architecture (see Figure 1).  Through 
these efforts, we explore novel training 
schemes based on this principle.  Some 
preliminary results are encouraging, 
and we hope to have more definitive 
conclusions in the near future.
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Figure 1: Some results from a preliminary study that points to optimal machine 
intelligence near the Edge of Chaos. Please refer to reference [2] for details.



Massive intersellar clouds to nano-water
Studying the chemistry of giant gas clouds between the stars to basic units of life using 
computational approaches

Interstellar chemistry

Most people will not imagine that 
chemistry and astronomy would cross 
paths. As an undergraduate, I recall 
my astronomy Professor sharing this 
when I queried him on a line from our 
astronomy textbook. The textbook 
mentioned the presence of massive 
clouds of gas and dust in interstellar 
space, which can be seen clearly in 
optical photos of stellar fields in our 
own galaxy or even in other galaxies. 
Molecules had been observed in 
these dust clouds, so it follows that 
chemical reactions must be taking 
place to form them. In some of these 
clouds (precursors to regions where 
stars and planets form), relatively large 
and exotic carbon, nitrogen, oxygen 
and hydrogen containing chemicals 
had been detected unambiguously 
with radio telescopes. Such detection 
was only possible due to laboratory 
measurements of the same molecules 
on Earth using microwave spectroscopy. 
How did these molecules get there? 
How were they formed? Why were 
some molecules seen and not others? 
Why is the molecular composition in 
some clouds quite different compared 
to others?

These questions can be answered by 
the interstellar chemist who models 
the thousands of chemical reactions 
taking place under extreme conditions 
in space. The models involve hundreds 
of exotic chemical species and predict 
the amount of chemicals present over 
10s of thousands to 100s of thousands 
of years of chemical evolution within 
the clouds. Information on the speed 
of the chemical reactions obtained 
from experimental measurements 
are incorporated into the models. In 
cases where experimental results are 
lacking, theoretical predictions of their 
reaction rates must be made. This was 
my research in the early days of my 
career before and after joining NUS.

When two molecules meet

To accurately model individual 
interstellar chemical reactions from 
first principles and therefore predict 
their outcomes and reaction rates, 
a mathematical function called the 
“potential energy surface”, or PES, must 
be known. This function is notoriously 
difficult to obtain accurately even 
for just a few atoms. Moreover, the 
complexity involved is exponentially 
increased by the inherently large 
dimensionality that is far more than 
just three dimensions, which the 
surface must faithfully reproduce for 
a chemical reaction to be modelled 
correctly.

Nevertheless, we have developed 
methods and algorithms to deal with 
these issues, and have even constructed 
the PES “on the fly” during simulated 
reactions between two molecules. The 
application uses machine learning to 
construct the PES as it discovers secret 
and subtle, yet important, aspects of 
the surface hidden in the manifold of 
dimensionality that was completely 
unanticipated by its human creators 
(i.e. us!).

The PES is also required for accurate 
treatment of the way single molecules 
move. When measuring molecules 
using spectroscopic methods, light 
atoms or groups of atoms within 
the molecules can teleport through 
potential walls. Such quantum 
weirdness manifests in experimentally 
measured spectra that can be 
extremely difficult to interpret without 
the assistance of accurate theoretical 
predictions. These measurements are 
crucial to understand the interactions 
of light with gas phase matter. They 
also have far reaching impact not 
just in the realm of interstellar and 
intergalactic space, but also within 
the Earth’s atmosphere where even a 
subtle spectral feature can significantly 

alter the balance of sunlight striking, or 
light reflected from the Earth’s surface. 

Understanding such spectra is 
therefore important for other 
seemingly unrelated areas, such 
as enabling telecommunication 
wavelengths to be free of atmospheric 
absorption. Developing highly accurate 
bound-state PES and predicting 
complex spectra are other areas we 
have explored in our theoretical and 
computational work at NUS.

Pushing through the size limitations of 
accuracy

While developing highly accurate and 
efficient methods for PES construction, 
we were constantly hampered by 
the limitation on how large a system 
could be studied computationally by 
accurately solving the Schrodinger 
equation. Systems containing more 
than about seven or at eight atoms 
could not be feasibly studied to the 
high level of accuracy required for 
our predictions. How could we push 
through these limitations so that 
much, much larger molecules could be 
accurately studied from first principles? 
We tried a few different ideas, but 
eventually came upon a promising 
approach, “divide and conquer”, which 
is also under development by other 
research groups. Hence, we turned our 
attention to developing our own divide 
and conquer method. Put simply, 
the “trick” involved taking a large 
molecule, say dozens of atoms in size, 
and fragmenting it into overlapping 
pieces, then using the “inclusion-
exclusion principle”, reconstruct the 
larger molecular system. There are 
additional subtleties that need to be 
considered to obtain high accuracy, 
but this summarises the gist of our 
approach.

How does breaking a larger molecule 
apart into smaller fragment molecules 
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push through the size limitations of 
accuracy? 

Instead of doing one accurate 
calculation on a large molecule, 
one must now perform accurate 
calculations on many small fragment 
molecules. How does this help? The 
key is that the computational expense 
(both in computer time and resources) 
associated with solving the Schrodinger 
equation from first principles increases 
with high accuracy, by as much as the 
size of the system to the seventh power 
or worse! This means that doubling the 
size of the system of interest results in 
a calculation requiring about 128 times 
longer and vastly more resources. 
The problem is so severe that even 
with technology improving rapidly, it 
is still impossible to accurately solve 
the Schrodinger equation from first 
principles for large molecules like 
proteins with a single calculation  
now or in the foreseeable future. 
However, breaking a large molecule 
into many single fragment molecules  
enables us to harness the power of 
parallel computing. This problem then 
all but disappears – first principle 
calculations on systems as large as 
proteins now become “doable”. We 
demonstrated the feasibility of this by 
performing such a calculation on the 
neuraminidase tetramer (a surface 
glycoprotein of the influenza virus) 
which is about 24,000 atoms in size! In 
addition, our fragmentation approach 
could be used to obtain accurate first 
principle energies of large molecules, 
as well as to predict other important 
properties from the calculations.

Our continued work on our 
fragmentation approach drew 
international recognition. My colleague 

and I were asked to write a review on 
the various fragmentation methods 
rapidly under development around 
the world. The review was in one of 
the most prestigious and highly cited 
chemical reviews journal in the world, 
Chemical Reviews [1], for which articles 
can only be submitted by invitation.

Bulk water from nano-water

While our calculation for neuraminidase 
may seem impressive, the original 
work was just a demonstration of 
the power of fragmentation. As it did 
not include water which is used as a 
solvent, the result was not particularly 
realistic. We continued to develop 
our fragmentation method to include 
water, or any solvent, around the 
molecules of interest by using an 
“implicit” model (represented as a 
continuous medium) for water. While 
this is commonly done, important 
effects like hydrogen bonding are not 
accounted for in such a treatment 
– which demonstrates a major 
limitation. This issue led us to apply 
fragmentation to accurately simulate 
“explicit” water (represented as 
individual molecules) as a solvent. 
In this approach, first principle 
calculations on water are performed 
by considering the quantum 
mechanical effects of individual water 
molecules.

Water has been, and continues 
to be extensively studied both 
theoretically and experimentally. The 
most commonly applied models for 
“explicit” water which can handle 
thousands or even tens of thousands of 
water molecules are those that involve 
very simple empirical treatments. Such 
models can be made to represent molar 

amounts of water molecules well, so 
dealing with only a few thousand, or 
even a few hundred water molecules 
is not a limitation. Their main major 
drawbacks are: 
(a) the complete neglection of any 
quantum effects and 

(b) “many-body” or cooperative effects 
are entirely missing from the models. 

Many researchers have proposed 
“workarounds” for these issues, but 
such “fixes” ignore the origins of the 
problem due to the effects of quantum 
mechanics.

Our team is currently working on some 
of the issues using fragmentation 
treatment. Initially, it appeared as 
if cooperative effects in water were 
substantial and would seriously 
hamstring most fragmentation 
treatments of bulk water. However, our 
careful analysis of large water clusters 
pointed to an artifact in the quantum 
mechanical treatment of water 
that causes the apparent significant 
cooperative effects. We found that 
very large clusters of water molecules 
could be  accurately modelled by 
considering, at most, up to only four 
water molecules at any one time. 
However, under most circumstances, 
only three water molecules need to 
be considered to account for the vast 
majority of the cooperative effects to 
achieve a highly accurate model of 
bulk water. Such trimers are roughly 
a nanometer across, making it look 
like nano-water (monomers, dimers 
and trimers of water).  Nevertheless, 
whether we can achieve this goal is 
still a matter of research and therefore 
remains to be seen.

ADVANCES IN SCIENCE | VOLUME 25 | NUMBER 1 | JUNE 2020 7



Demystifying data science
My Data Science Journey - Yesterday, Today & Tomorrow

Introduction

Let me start off by answering some 
simple questions such as, what is data 
science, why is data science important 
and how we apply data science. Data 
Science is the study of data using 
a combination of skills in statistics, 
mathematics, computer science and 
programming. The aim of data science 
applications is to gain actionable 
insights and knowledge from data to 
support informed decision making. 
Data science is important because it 
assists businesses to better understand 
key factors relating to business 
problems. This in turn enhances 
operational efficiency and business 
competitiveness. For example, data 
science can mitigate risk and fraud by 
identifying anomalies in data patterns 
to create alerts to signal when unusual 
business activity is detected. 

Having an impact and making a 
difference

My passion for data science took a new 
direction in 2002, while I was working 
as a biostatistician at the National 
Medical Research Council at the Clinical 
Trials Centre in Sydney, Australia. New 
tests and treatments are not offered to 
the public immediately. They need to 
be studied.  Clinical trials are usually 
conducted in humans in various phases. 
My colleagues and I worked on cancer 
clinical trials and my appreciation for 
data analysis grew as I could see how 
data science contributed to supporting 
new treatments to benefit cancer 
patients.

Some of the key questions I had to 
consider when designing the clinical 
trials were, the number of treatment 
groups, the sample size, when to stop 
the trial, when to increase the sample 
size, etc. These were critical decisions 
that would impact human health and 
well-being, so I made every effort to 

ensure that my decisions were well-
supported with statistical theories and 
rigour. 

I stayed awake many nights thinking 
about the clinical trial design I was 
proposing, versus alternative possible 
designs. Good communication skills are 
required to present ideas and analytical 
results to stakeholders in a convincing 
and easy to understand manner. The 
next day, I would have marathon 
discussions with the oncologist, 
surgeon and my supervisor to ascertain 
and validate that my proposed clinical 
design was the right one to use. 

The first clinical trial I worked on was 
related to breast cancer. In this study, 
we sought to determine whether 
invasive surgical procedures could be 
reduced while still ensuring successful 
treatment for the cancer. This would 
contribute significantly to the patient’s 
quality of life. 

Developing future data scientists

After my first position in industry as a 
biostatistician, I developed and took 
charge of multiple innovative projects 
in the Pharmaceutical, Healthcare, 
Telecommunications, and Fast-Moving 
Consumer Goods (FMCG) Industry. 
After nine years in industry, I returned 
to academia where I was able to 
combine my industry knowledge with 
theoretical foundations to help groom 
future data scientists. My first position 
in academia was as Chief of Business 
Analytics at the National University 
of Singapore (Institute of Systems 
Science) from 2011 to 2016. During this 
period, I designed an approved Master 
of Technology in Enterprise Business 
Analytics Degree for postgraduate 
working professionals who sought 
to combine their current skills with 
analytics as the demand for data 
science grew. I also implemented five 
new short executive business analytics 

courses for corporate professionals. 
These courses were designed for 
business executives to appreciate the 
value of analytical solutions in their 
day–to-day business operations.	

In 2017, I was appointed as the Director 
of the Data Analytics Consulting Centre 
at the National University of Singapore 
and Associate Professor jointly in the 
Department of Statistics & Applied 
Probability and the Department of 
Mathematics. My position jointly in 
academia and consulting now enables 
me to bring industry professionals 
and data science students together 
to apply data science to workplace 
problems. I seek to develop data 
science courses that are practical and 
provide experiential learning for our 
data science students. To make the 
data science experience as real as 
possible for my students, I provide 
real-world problem solving projects, 
where teams of students present 
and communicate their solutions to 
real-world problems to the whole 
class. I invite data science industry 
professionals as guest lecturers, so that 
students can learn first-hand current 
business challenges and how these 
challenges are overcome through data 
science. 

To add further value to industry, I 
also address stakeholders through 
conferences, run in-house conferences 
and provide consulting services.

Editorial leadership

One of the students I supervised is Ms 
TAN Shuen Lin, for her final year project 
“A Machine Learning Overbooking 
Algorithm for Enhancing Clinic 
Efficiency” [1]. Her paper analyses 
patient no-shows, which limits access 
to healthcare for other patients. The 
focus of this paper was to evaluate our 
proposed overbooking algorithm and 
compare it to the reference scenario 
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of no-overbooking, as well as blind 
overbooking. The criteria used for the 
evaluation of the three methods was 
clinic efficiency and clinic profitability. 

Our findings conclude that predictive 
overbooking brings about significant 
improvements in several aspects of 
clinic efficiency as compared to both 
no-overbooking and blind overbooking. 
We also observed a significant increase 
in clinic profits from the simulation of 
predictive overbooking compared to 
no-overbooking by almost 100%. Clinic 
profits under predictive overbooking 
were also greater than with blind 

overbooking, by 19%. This paper was 
published in the International Journal 
of Advances in Science Engineering 
and Technology [1]. 

Another area I have a strong interest 
in is Customer Analytics. Business 
success and sustainability are heavily 
dependent on customer satisfaction. 
Many businesses have lots of 
consumer data which is merely stored. 
This is a lost opportunity to draw 
insights and knowledge from the data 
for making better business decisions. 
In my article [2] last year, “6 Steps to 
Building a Powerful Customer Analytics 

System”, I sought to provide a guide for 
business managers who are not data 
scientists through six steps for building 
a powerful customer analytics system 
(see Figure 1).

I also frequently author book chapters 
and publish my research. One of my 
book chapters, “Healthcare Analytics: 
A Case Study Approach using the 
Framingham Heart Study” [3], seeks 
to educate clinicians and healthcare 
professionals on the value of healthcare 
analytics. This chapter demonstrates 
how the analysis of health data, such 
as blood cholesterol, blood pressure, 
smoking, and obesity, can identify 
patients at high risk of heart attacks, 
and how the proactive management of 
patient lifestyles and use of medication 
can prevent heart attacks.  

Data scientists also contribute 
to infectious disease modelling 
for challenging times such as the 
COVID-19 pandemic. My colleague, 
Dr WU Chengyuan and I are working 
on a COVID-19 Genomics Research 
Project. The objective of our project 
is to analyse and study the novel 
coronavirus COVID-19, as well as 
related coronaviruses in humans and 
also animals. Currently, experts are 
divided on where the virus comes 
from (e.g. bats, snakes, pangolin, etc). 
Knowledge of the origin of the virus 
can potentially help the development 
of vaccines/cures and/or shape future 
public policy. These examples illustrate 
how data science plays a crucial role 
to enable industries and businesses 
across many sectors to make powerful 
data-driven decisions based on facts, 
statistical numbers and trends. 
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Figure 1: Six steps to building a powerful customer analytics system for your 
organisation. When businesses better understand their customers’ purchasing 
behaviour and lifestyles, they can classify their customers more accurately and 
make targeted predictions  that are meaningful  in meeting customer needs.
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NUS researchers have created a whole 
new library of atomically thin two-
dimensional (2D) materials, christened 
“ic-2D”, to denote a class of materials 
based on self-intercalation of native 
atoms into the gap between the layers 
of crystals.

Atomically thin two-dimensional (2D) 
materials offer an excellent platform 
to explore a wide range of intriguing 
properties in confined 2D systems. 
However, compositional tuning of 
transition metal dichalcogenides to 
make new materials other than the 
standard binary or ternary compounds 
is challenging. In the past, theoreticians 
have tried to predict new properties 
based on combining atoms into a crystal 
structure where metal and chalcogen 
atoms sit in covalently bonded sites 
within the basic building block (unit 
cell). However, their theories did not  
address the situation when the same 
metal atom sits in between two unit 
cells (filling the van der Waals gap).

Now, research teams led by Prof Kian 

Ping LOH from the Department of 
Chemistry, Faculty of Science, NUS 
and collaborator Prof Stephen J. 
PENNYCOOK from the Department of 
Materials Science and Engineering, 
Faculty of Engineering, NUS, have 
synthesised and characterised for 
the first time, an atlas of wafer-scale 
atomically thin ic-2D materials based 
on inserting the same metal atoms 
between the van der Waals gap of 
transition metal dichalcogenides. The 
researchers’ results were published in 

Nature on 13 May 2020.

Next, the teams plan to incorporate this 
new library of materials into memory 
devices, for practical applications, 
and intercalate foreign atoms into the 
van der Waals gap and exploit novel 
functionalised ic-2D materials.

Reference: Zhao X, et.al., “Engineering 
Covalently Bonded 2D Layered 
Materials by Self-Intercalation” NATURE 
DOI: 10.1038/s41586-020-2241-9.

A new library of atomically thin two-dimensional 
materials

NEWS ROUNDUP

Birds are the best known class of animals, 
and since 1999, only five or six new 
species have been described each year on 
average. Recently, a joint research team 
from NUS and the Indonesian Institute 
of Sciences (LIPI) made a quantum leap 
in the discovery of cryptic avian diversity 
by uncovering five bird species and five 
subspecies new to science.

The team, led by Prof Frank RHEINDT 
from Department of Biological Sciences, 
NUS found the birds in three small 
island groups off Sulawesi, Indonesia. 
The islands are situated in Indonesia’s 
Wallacea region, an archipelago at the 
interface between the Oriental and 
Australian biogeographical realms, 
named after Sir Alfred Wallace, who 

was the most famous historical collector 
exploring the area.

The results of the study, which were 
published in the journal Science on 10 
January 2020, provide evidence that our 
understanding of species diversity of 
complex areas such as Wallacea remains 
incomplete even for relatively well-

known groups such as birds. The findings 
also suggest that modern exploration to 
find undescribed species diversity can be 
targeted to areas of high promise.

Reference: Rheindt FE*, et. al., “A lost 
world in Wallacea: description of a 
novel montane archipelagic avifauna” 
SCIENCE DOI: 10.1126/science.aax2146.

New avian species discovered in little-explored 
islands of Wallacea

Visual showing the three new species found on Taliabu island (from left), the 
Taliabu Grasshopper-Warbler, the Taliabu Myzomela and the Taliabu Leaf-Warbler.

Researchers at NUS Chemistry, and Materials Science and Engineering have 
fabricated a whole new library of ic-2D materials by filling the van der Waals gap 
in (two-dimensional) 2D materials. Schematics showing the step-by-step growth 
of a typical Ta7S12 ic-2D material.
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