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Summary

Chromosome biorientation and congression during mitosis

require precise control of microtubule dynamics [1–4].
The dynamics of kinetochore microtubules (K-MTs) are

regulated by a variety of microtubule-associated proteins
(MAPs) [4–9]. Recently, a MAP known as HURP (hepatoma

upregulated protein) was identified [10–12]. During mitosis,
Ran-guanosine 50-triphosphate (RanGTP) releases HURP

from the importin b inhibitory complex and allows it to
localize to the kinetochore fiber (k-fiber) [12, 13]. HURP stabi-

lizes k-fibers and promotes chromosome congression [12,
14, 15]. However, the molecular mechanism underlying the

role of HURP in regulating chromosome congression
remains elusive. Here, we show that overexpression of the

N-terminal microtubule binding domain (1–278 aa, HURP278)
of HURP induces a series of mitotic defects that mimic the

effects of Kif18A depletion. In addition, coimmunoprecipita-

tion and bimolecular fluorescence complementation assays
identify Kif18A as a novel interaction partner of HURP.

Furthermore, quantitative results from live-cell imaging
analyses illustrate that HURP regulates Kif18A localization

and dynamics at the plus end of K-MTs. Lastly, misaligned
chromosomes in HURP278-overexpressing cells can be

partially rescued by the overexpression of Kif18A. Our
results demonstrate in part the regulatory mechanism for

Kif18A during chromosome congression and provide new
insights into the mechanism of chromosome movement at

the metaphase plate.

Results

Overexpression of HURP278 Increases Kinetochore
Oscillation Amplitude

Functional domain studies had previously revealed that over-
expression of the N terminus microtubule binding domain of
HURP (hepatoma upregulated protein) (1–280 aa, HURP280)
led to a series of mitotic defects including misaligned chromo-
somes [16]. Coincidently, overexpression of our N-terminal
fragment of HURP (1–278 aa, HURP278; see Figure S1A avail-
able online) also induced similar mitotic defects (Figures
S1B–S1E), as seen in the HURP280-overexpressing cells [16].

To better understand the mechanism by which HURP278

overexpression induced these mitotic defects, we observed,
using live-cell imaging, that HeLa cells overexpressing
*Correspondence: dbslyc@nus.edu.sg
HURP278 in the prometaphase required 104 min to enter ana-
phase, whereas this process took less than 20 min in control
cells, suggesting that overexpression of HURP278 resulted in
a mitotic delay (Figure 1A). This observation was consistent
with cell-cycle profiles analyzed by flow cytometry that
HURP278-overexpressing cells exhibited an increased G2/M
index compared to the GFP vector (control) or full-length
HURP-overexpressing cells (Figures S1F–S1H).
Interestingly, the aligned chromosomes in HURP278-overex-

pressing cells were found to occasionally oscillate away from
the spindle equator during the prometaphase to metaphase
stage (Figure 1A, HURP278, 0:08–0:24 min, arrowheads) and
the onset of anaphase (Figure 1A, HURP278, 1:52–2:20 min,
arrowheads). These phenomena could be a result of defective
chromosome movement in HURP278-overexpressing cells.
Chromosome movement during mitosis is powered by the
synergistic regulation of motor proteins and kinetochore
microtubule (K-MT) dynamics [5–7, 9, 17]. In addition, chromo-
somes keepmoving back and forth even after they are eventu-
ally aligned to spindle equator, a behavior known as chromo-
some oscillation [2, 18].
We next assessed whether the transiently misaligned chro-

mosomes observed in HURP278-overexpressing cells were a
result of defective chromosome oscillation. To test this possi-
bility, we quantified the kinetochore oscillation amplitude
(KOA) by expressing a kinetochore marker, GFP-Hec1 [19].
Interestingly, the KOA in HURP278-overexpressing cells was
significantly larger compared to control cells (Figures 1B and
1C; Movie S1; Movie S2). Specifically, the average KOA was
approximately 0.63 6 0.003 mm in control cells (Figure 1D,
left), whereas in HURP278-overexpressing cells, the average
KOA increased 2.49-fold to 1.57 6 0.008 mm (Figure 1D, right).
To further delineate the role of HURP in regulating chromo-

some oscillation, we quantified the switching rate of kineto-
chore oscillation direction and the velocity of kinetochore
movement as described previously [17]. On average, the
switching rate of kinetochore oscillation direction in control
cells and in HURP278-transfected cells was 1.71 6 0.029
times/min and1.166 0.029 times/min, respectively (Figure 1E).
Furthermore, the average velocity of kinetochore movements
was significantly increased in HURP278-transfected cells
(2.78 mm/min) compared to control cells (1.93 mm/min) (Fig-
ure 1F). These data suggest that the increased KOA observed
in HURP278-overexpressing cells stemmed from the combined
effects of the decreased switching rate of kinetochore oscilla-
tion direction and an increased kinetochore movement
velocity.

HURP Binds Kif18A and Modulates Its K-MT Plus-End
Localization

The chromosome oscillation and mitotic defects observed
in HURP278-overexpressing cells (Figure 1; Figures S1B–S1E)
highly resemble the phenotypes identified previously in
Kif18A-depleted cells [8, 17]. Kif18A is a processive microtu-
bule plus-end-directed motor that controls chromosome
oscillation and congression by modulating the plus-end
dynamics of K-MTs via its microtubule depolymerase activity
[8, 17, 20–22]. It is therefore of interest to study the potential
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Figure 1. Overexpression of HURP278 Increases Kinetochore Oscillation Amplitude

(A) Representative time-lapse images of a control cell and a GFP-HURP278 (hepatoma upregulated protein)-overexpressing mitotic HeLa cell. DNA was

labeled with mCherry-H2B. Lagging chromosomes in prometaphase and anaphase are indicated by arrowheads.

(B) Representative horizontal kymographs of GFP-Hec1 fluorescence from wild-type (WT) HeLa cells (control) and HURP278-overexpressing HeLa cells.

(C) Distance versus time plots of the normalized kinetochore oscillation track. The horizontal red line indicates the mean oscillation position.

(D) Histograms displaying the oscillation amplitudes quantified from WT HeLa cells (control, n = number of kinetochore oscillation amplitudes quantified

from ten cells from four independent experiments) and HURP278-overexpressing HeLa cells (n = number of kinetochore oscillation amplitude quantified

from 14 cells from five independent experiments). The mean oscillation amplitude 6 standard error of the mean (SEM) is shown for each distribution,

and the mean value is labeled with a vertical dashed line.

(E) A bar chart representing the average rate of kinetochore oscillation directional switch in WT HeLa cells (control) and mCherry-HURP278-overexpressing

cells. *p = 3.56 3 1024 (one-tailed t test). Error bars represent +SEM.

(F) A bar chart representing the average movement velocity of kinetochores in WT HeLa cells (control) and mCherry-HURP278-overexpressing cells. *p =

1.67 3 1023 (one-tailed t test). Error bars represent +SEM.

HURP Regulates Kinesin Kif18A Function
1585



0

90

180

270

0

90

180

270

H
U

R
P

 s
i
R

N
A

C
o

n
t
r
o

l
 s

i
R

N
A

Kif18A HURP Hec1 Overlay

HURP
Kif18A

Hec1

HURP
Kif18A

Hec1

A B

R
el

at
iv

e 
In

te
ns

ity
 

Distance (μm)

0 1 2

0 1 2

DNA OverlayKif18A HURP
278C

C
o

n
t
r
o

l
H

U
R

P
2

7
8

120 kD

120 kD

110 kD

37 kD

- +-
FLAG-HURP + --

IB:
anti-Kif18A
Input:
anti-Kif18A

Input:
anti-FLAG

IP: FLAG

FLAG-HURP278

D
FLAG-vector + - -

FLAG-HURP
FLAG-HURPΔ173-278

FLAG-HURPΔ173-360

FLAG-vector

- - - +

- + - -
+ - - -

- - + -

IP: FLAG

120 kD

110 kD

120 kDIB:
anti-HA
Input:
anti-HA

Input:
anti-FLAG

F

+ + + +HA-Kif18A

E Venus Myc Overlay

V
C

-
H

U
R

P
+

V
N

-
K

i
f
1
8
A

V
C

-
v

e
c
t
o

r
+

V
N

-
K

i
f
1
8
A

V
C

-
H

U
R

P
+

V
N

-
v

e
c
t
o

r

V
C

-
v

e
c
t
o

r
+

V
N

-
v

e
c
t
o

r

Figure 2. HURP Binds Kif18A and Modulates Its Kinetochore Microtubule Plus-End Localization

(A) Mitotic spindle localization of GFP-Kif18A in control small interfering RNA (siRNA) HeLa cells and HURP-siRNA HeLa cells. Cells were stained with anti-

HURP (red) and anti-Hec1 antibodies (orange). DNAwas stainedwith Hoechst 33342. The detailed GFP-Kif18A localization at the plus-end tip of kinetochore

microtubule (K-MT) is enlarged in the upper right box. Scale bar represents 5 mm.

(B) Graphs representing the relative fluorescence intensity along a 1-pixel-wide line scan indicated by a white dashed line in (A). The black vertical dashed

line indicates the hypothetical kinetochore-microtubule boundary.

(C) K-MT localization of GFP-Kif18A inWTHeLa cells (control) andmCherry-HURP278-overexpressing cells. DNAwas stained with Hoechst 33342. Scale bar

represents 5 mm.

(D) Whole-cell lysates of 293T cells transfected with a FLAG vector, FLAG-HURP, or FLAG-HURP278 were collected for coimmunoprecipitation (coIP) using

FLAG M2 beads. Immunoprecipitated proteins were blotted for Kif18A. The overexpression levels of FLAG-HURP and FLAG-HURP278 were detected using

an anti-FLAG antibody.

(E) Bimolecular fluorescence complementation assays using split Venus fragments. HURP was fused with Myc and Venus-C (VC), and Kif18A was fused

withMyc and Venus-N (VN) as shown in Figure S2F. HeLa cells were cotransfectedwith Venus-N (VN) and Venus-C (VC) vectors only (VC-vector+VN-vector),

VC-HURP and VN-vector, VC-vector and VN-Kif18A, or VC-HURP and VN-Kif18A. Cells were fixed and stained with an anti-Myc antibody (red). Fluorescent

signal of Venus was detected using a 488 channel (green), which indicated the binding of the two proteins in vivo. DNA was stained with Hoechst 33342.

Scale bar represents 5 mm.
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relationship between HURP and Kif18A to understand their
roles in regulating chromosome oscillation during chromo-
some congression.

Similar to HURP, Kif18A localized to the plus end of K-MTs in
a comet-like gradient pattern (Figure 2A, top) [8, 12, 15, 17]. We
first askedwhether the K-MT localization of Kif18A is regulated
by HURP. In control small interfering RNA (siRNA) cells, GFP-
Kif18A localization gradient overlapped with endogenous
HURP (Figure 2A, top), as well as the signal intensity of GFP-
Kif18A gradient shown by line scan profile (Figure 2B, top). In
contrast, in HURP depleted cells, the gradient localization
pattern of GFP-Kif18A was markedly abolished (Figures 2A
and 2B, bottom) and displayed a dot-like localization pattern
on the plus end of K-MTs (Figure 2A, bottom). On the other
hand, knocking down of HURP did not affect the localization
of other MT tip proteins such as EB1 and CLIP170 (Figures
S2A–S2D), indicating the specificity of the interaction between
HURP and Kif18A on the plus end of K-MTs. In addition, over-
expression of HURP278 markedly disrupted the microtubule
K-MTs plus-end accumulation of Kif18A (Figure 2C), which
distributed throughout the entire K-MTs (Figure 2C). Taken
together, these results suggest that the localization pattern
of Kif18A on K-MTs is highly dependent on HURP.

We next examined whether Kif18A can associate with
HURP. As shown in Figure 2D, both FLAG-HURP and FLAG-
HURP278, but not FLAG-vector control, can pull down endog-
enous Kif18A. Furthermore, to confirm the interaction between
HURP and Kif18A in vivo, we utilized the bimolecular fluores-
cence complementation (BiFC) assay [23, 24]. Visualization
of Venus signal in the BiFC assay indicates a direct interaction
between the two proteins in vivo [25, 26]. To this end, HURP
and Kif18A were fused with the nonfluorescent Venus-C (VC)
and -N (VN) fragments, respectively (Figure S2E), and cotrans-
fected into HeLa cells (Figure 2E). Notably, only VC-HURP and
VN-Kif18A coexpressed cells generated Venus fluorescence
signals but not the controls (Figure 2E). In addition, the signal
intensity of Venus reached the highest level at the plus end of
K-MTs (Figure 2E), indicating that HURP interacts directly with
Kif18A at the plus end of K-MTs in vivo.

To identify the Kif18A binding domain of HURP, we con-
structed additional HURP fragments and deletion mutants
(Figure S2F) and performed coimmunoprecipitation (coIP)
assays (Figure 2F; Figure S2G). As shown in Figure 2F, deletion
of the 173–360 aa region in HURP (HURPD173–360) markedly
abolished the interaction between Kif18A and HURP, suggest-
ing that this domain is responsible for the interaction between
these two proteins.

Overexpression of HURP Reduces the Microtubule

Plus-End Dynamics of Kif18A
We next hypothesized that the interaction between these two
proteins may affect Kif18A dynamics at the plus end of K-MTs.
To test this, we performed fluorescence recovery after
photobleaching (FRAP) analysis to quantify the dynamics of
GFP-Kif18A at the plus end of K-MTs (Figures S3A and S3B;
Figure 3A). Normalized intensity was fitted into a constrained
exponential curve (Figure 3B) to calculate the recovery half-
life (T1/2) of GFP-Kif18A (Figure 3C). Compared to the T1/2 of
12.3 s in control cells (Figure 3C), a significantly increased
(F) Whole-cell lysates of 293T cells cotransfected with HA-Kif18A and FLA

collected for coIP using FLAG M2 beads. Immunoprecipitated proteins wer

were detected using an anti-HA antibody. The overexpression levels of FLAG

an anti-FLAG antibody.
half-life of Kif18A was found in mCherry-HURP-overexpress-
ing (21.4 s) and mCherry-HURP278-overexpressing (19.9 s)
cells, suggesting a decreased turnover rate of GFP-Kif18A in
these two cells. On the other hand, the T1/2 of GFP-Kif18A in
mCherry-HURPD173–360 overexpressing cells (11.5 s) was
similar to that of control cells (12.3 s), suggesting that overex-
pression of mCherry-HURPD173–360, which is incapable of
interaction with Kif18A, has little effect on the turnover rate
of GFP-Kif18A (Figures 3B and 3C).
To dissect the specific role of HURP in the regulation of

Kif18A dynamics from its known MT stabilization function,
we next asked whether the deletion of Kif18A binding domain
would affect the MT stabilization function of HURP. To answer
this question, we performed fluorescence loss in photo-
bleaching (FLIP) assay to monitor the turnover rate of
GFP-a-tubulin in U2OS cells stably expressing GFP-a-tubulin
(Figure S3A). Overexpression of mCherry-HURP278 or
mCherry-HURPD173–360 exhibited an increased MT stabiliza-
tion effect, similar to mCherry-HURP overexpression (Fig-
ure 3D), because the turnover rates (T1/2) of GFP-a-tubulin
measured were approximately 162.9 s, 156.7 s, and 164.33 s,
respectively, in these cells compared to that of control cells
(123.6 s) (Figure 3E). Taken together, the FRAP and FLIP anal-
yses demonstrate that the role of HURP on Kif18A is indepen-
dent from its MT binding and stabilizing function, because
HURPD173–360 deletion mutant still retains a similar MT stabili-
zation ability to that of HURP and HURP278, even though its
ability to bind Kif18A and regulate Kif18A dynamics was
abolished.
BecauseKif18A is aMTplus-end-directedprocessivemotor,

the reduction of Kif18A dynamics on MT plus end may be
due to the decrease of its movement velocity in the presence
of excessive HURP. To verify this idea, we constructed photo-
activatable GFP (PAGFP)-Kif18A to study its MT plus-end-
directed movement by generating time-lapse kymographs
(Figures 3F–3I). The line scan profile showed that photoacti-
vated PAGFP-Kif18A rapidly accumulated toward the plus
end of K-MTs over time in control cells and in mCherry-
HURPD173–360-overexpressing cells (Figures 3F and 3I; Movie
S3). In contrast, inmCherry-HURP- ormCherry-HURP278-over-
expressingcells, the linescanprofilesdidnotshowasignificant
difference from 0 to 170 s (Figures 3G and 3H; Movie S3),
indicating that the time-dependent accumulation of PAGFP-
Kif18A toward theplusendofK-MTsoccurredat amuchslower
rate. In addition, fluorescencedissipation after photoactivation
(FDAPA) analyses were performed to quantify the dynamics of
Kif18A at the plus end of K-MTs (Figure S3C), and the half-lives
(T1/2) of PAGFP-Kif18A fluorescent signal loss in photoacti-
vated area were quantified (Figures S3D and S3E). The results
were consistent with that of FRAP assay and further support
our hypothesis that HURP regulates Kif18A dynamics at the
plus end of K-MTs by controlling its movement velocity toward
K-MT plus end.

Kif18A Overexpression Partially Rescues Lagging

Chromosomes Phenotype in HURP278-Overexpressing
Cells

We found that the occurrence of misaligned chromosomes
(red dots in Figure S4A) is positively correlated with the
G vector, FLAG-HURP, FLAG-HURPD173–278, or FLAG-HURPD173–360 were

e blotted for hemagglutinin (HA). The overexpression levels of HA-Kif18A

-HURP, FLAG-HURPD173–278, and FLAG-HURPD173–360 were detected using
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expression levels of HURP278 (green dots in Figure S4A), sug-
gesting that a higher level of HURP278 is expressed the more
Kif18A is sequestered at the K-MTs and is more likely to result
in chromosome congression defects. Notably, we observed
two types of lagging chromosomes in HURP278-overexpress-
ing cells. Quantitative analysis showed that 30.8% of
HURP278-overexpressing cells contained moderate lagging
chromosomes, which locate close to the aligned chromo-
somes at the metaphase plate and could realign to the meta-
phase plate over time (Figures 4A–4C; Movie S4), whereas
25.9% of HURP278-overexpressing cells contained the severe
lagging chromosomes, which cluster around the spindle poles
away from the spindle equator but remain near the spindle
poles over time (Figures 4A–4C; Movie S4).

To test the specificity of HURP278 on Kif18A, we performed
rescue experiments by introducing ectopic Kif18A protein
into HURP278-overexpressing cells. As shown in Figure 4C,
co-overexpression of GFP-Kif18A with FLAG-HURP278 sig-
nificantly reduced the percentage of moderate lagging
chromosomes from 30.8% to 15.3%, compared to that in
HURP278-overexpressing cells (Figure 4C). This suggests
that the moderate lagging chromosome phenotypes observed
in HURP278-overexpressing cells were caused by insufficient
Kif18A at the plus end of K-MTs, resulting in increased chro-
mosome oscillation amplitude and a series of mitotic defects
mimicking Kif18A-knockdown phenotype. On the other hand,
overexpression of HURPD173–360 (Kif18A bindingmotif deletion
mutant) had little effect on the MT plus-end accumulation
of GFP-Kif18A compared to the control cell (Figure S4B).
Importantly, the quantitative results displayed 14.1% of
HURPD173–360-overexpressing cells containing moderate lag-
ging chromosomes, similar to the cells co-overexpressed
with GFP-Kif18A and FLAG-HURP278. These results strongly
suggest the specificity of Kif18A regulation by HURP, which
is manifested in the occurrence of moderate lagging chromo-
somes when normal Kif18A and HURP function at the K-MT is
perturbed. In addition, overexpression of HURPD173–360 signif-
icantly reduced the percentage of cells with severe lagging
chromosome phenotypes, suggesting that other domains of
HURPmay have regulatory roles in chromosome congression.

Discussion

The activities of motor proteins and microtubule-associated
proteins (MAPs) synergistically modulate the dynamics of
K-MT and chromosome movement to ensure proper
Figure 3. HURP and HURP278 Overexpression Reduce the Microtubule Plus-E

(A) Normalized recovery curve of GFP-Kif18A signal intensity after photobleachi

(control), mCherry-HURP, mCherry-HURP278, or mCherry-HURPD173–360 and sy

(FRAP) assays as shown in Figure S3A. A 3.5 3 3.5 mm2 square region of in

and photobleached with a 405 nm laser. Images were acquired in a 4 s interv

Data were collected from five independent experiments (n = number of mitotic

(B) Normalized recovery curves of FRAP assay were fitted into a single constr

(C) A bar chart representing the recovery half-life (T1/2) of GFP-Kif18A fluores

***p = 6.1 3 1021 (one-tailed t test). Error bars represent +SEM.

(D) Representative images of mitotic spindle signal loss in fluorescence loss in

were transfected with a mCherry vector only (control), mCherry-HURP, mCher

as shown in Figure S3A. Two photobleaching laser spots were placed away fro

in a 3.7 s interval. The GFP signal intensity of mitotic spindle was measured (n

(E) Normalized signal decreasing curves of mitotic spindle in FLIP assays. Dott

the mean of all measurements. Turnover half-lives (T1/2) for GFP-a-tubulin were

experiments. The mean, SEM, and p of T1/2 are shown in the plots.

(F–I) Representative kymographs and line intensity profile images of photoactiv

of the selected 2.643 0.66 mm2area from the plus end of K-MT are shown. The p

full-circle line-intensity profiles were generated for the first time point (0 s) and
chromosome congression during mitosis for faithful segrega-
tion of genetic material [4–9]. HURP, a novel RanGTP-targeted
MAP, bundles and stabilizes k-fibers to facilitate kinetochore
capture [12, 13, 15]. The depletion of HURP leads tomisaligned
chromosomes and mitotic delay [15], suggesting a vital role of
HURP in regulating chromosome congression. However, the
mechanism by which HURP regulates chromosome congres-
sion is poorly understood. Here, we present a novel mecha-
nism in which HURP controls chromosome congression by
modulating the function of a microtubule plus-end depolymer-
ase, Kif18A at the K-MTs [21].
The N-terminal microtubule binding domain of HURP,

HURP278, when overexpressed, constitutively binds to the
entire K-MTs and induces mitotic defects mimicking the
phenotypes of Kif18A depletion (Figure 1; Figures S1A–S1E).
This led us to identify Kif18A as a novel interaction partner of
HURP (Figures 2D and 2E). This interaction ensures proper
localization of Kif18A and the regulation of its dynamics at
the plus end of K-MTs (Figure 2A; Figure 3). The overexpres-
sion of HURP or HURP278 compromises the rapid microtubule
plus-end-directed accumulation of Kif18A at the K-MTs (Fig-
ure 2C; Figure 3H). The deficiency of Kif18A at the plus-end
tips of K-MTs in turn results in an increase of chromosome
oscillation amplitude due to a decrease of kinetochore oscilla-
tion direction switching rate and an increase of kinetochore
movement velocity (Figures 1C–1F). Thus, lack of Kif18A at
the plus end of K-MTs in HURP278-overexpressing cells
induces defective chromosome congression leading to a delay
in mitosis (Figure 1A).
We suggest that the k-fiber localization and/or protein

expression levels of HURP/HURP278 may play a pivotal role
in regulating Kif18A dynamics and counter for the severity of
mitotic defects. Based on these findings, a regulatory mecha-
nism for Kif18A function at the K-MTs in maintaining proper
chromosome congression is proposed (Figure 4D). In normal
condition, the association between HURP and Kif18A creates
a comet-like gradient pattern of Kif18A at the plus-end tip of
K-MTs at the k-fibers (Figure 4D, left). On the other hand,
abnormally regulated HURP/HURP278 affects the proper
plus-end tip accumulation of Kif18A at the K-MTs (Figure 4D,
right). This in turn results in a series ofmitotic defects including
misaligned chromosomes due to reduced Kif18A microtubule
plus-end depolymerase activity.
In summary, we describe for the first time a potential regula-

tory mechanism for Kif18A function at the K-MTs in regulating
chromosome movement and congression during mitosis.
nd Dynamics of Kif18A

ng. HeLa cells were cotransfected with GFP-Kif18A andmCherry vector only

nchronized before performing fluorescence recovery after photobleaching

terest (ROI) was placed on the middle of the mitotic spindle (Figure S3B)

al. The recovery of GFP-Kif18A signal intensity in the ROI was measured.

cells quantified). Error bars represent 6SEM.

ained exponential curve to calculate the recovery half-life (T1/2) in (C).

cent signal in the photobleached area. *p = 8.8 3 1026; **p = 1.7 3 1026;

photobleaching (FLIP) assay. U2OS cells stably expressing GFP-a-tubulin

ry-HURP278, or mCherry-HURPD173–360 and synchronized before FLIP assay

m the metaphase spindle to a diffraction-limited area. Images were acquired

= number of mitotic spindles analyzed). Scale bar represents 5 mm.

ed gray lines represent each individual measurement. Black lines represent

calculated by linear regression. Data were collected from four independent

atable GFP-Kif18A plus-end movement after photoactivation. Kymographs

lus end and theminus end of the K-MTof the selected area are indicated. The

the last time point (170 s).
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Figure 4. Kif18A Overexpression Partially Rescues Lagging Chromosomes Phenotype in HURP278-Overexpressing Cells

(A) Examples of two different types of lagging chromosome phenotypes identified in HURP278-overexpressing HeLa cells. The moderate lagging chromo-

somes are represented by the presence of lagging chromosomes close to the metaphase plate, whereas the severe lagging chromosomes are represented

by chromosomes clustered in the vicinity of the spindle poles.

(B) A schematic diagram representing moderate and severe lagging chromosome phenotypes identified in HURP278-overexpressing cells.

(C) The bar chart represents the percentage of mitotic cells with different types of lagging chromosome phenotypes for WT HeLa cells (control) and HeLa

cells cotransfected with FLAG-HURP278 and GFP vector only, FLAG-HURP278 and GFP-Kif18A, or FLAG-HURPD173–360 and GFP vector only. Metaphase

cells were synchronized by nocodazole treatment followed by MG132 treatment (n = number of cells quantified from three independent experiments). Error

bars represent +SEM.

(D) A schematic model representing the role of HURP at the kinetochore fiber (k-fiber) in regulating proper Kif18A accumulation at the plus-end tip of K-MT.

In control cells, a HURP gradient generated by Ran-guanosine 50-triphosphate (RanGTP)-importin b at the k-fiber regulates the plus-end-directed accumu-

lation of Kif18A at the K-MT, which results in the formation of a comet-like gradient localization pattern of Kif18A in the vicinity of the kinetochore (left).

Overexpression of HURP/HURP278 associates with the entire K-MT and globally undermines the plus-end-directed transportation of Kif18A at the K-MT.

Hence, the critical concentration of Kif18A at the plus-end tip of K-MT is not achieved (right).
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Previous studies have shown that HURP forms a protein
complex with other proteins important for mitotic spindle
assembly including TPX2, XMAP215 (TOGp), Eg5, and Aurora
A [11, 27–31]. Hence, understanding the role of HURP and its
k-fiber complex would provide important new insights into
the mechanism of mitotic spindle formation and chromosome
congression.
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Supplemental Information includes four figures, Supplemental Experi-
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at doi:10.1016/j.cub.2011.08.024.
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12. Silljé, H.H., Nagel, S., Körner, R., and Nigg, E.A. (2006). HURP is a

Ran-importin beta-regulated protein that stabilizes kinetochore micro-

tubules in the vicinity of chromosomes. Curr. Biol. 16, 731–742.

13. Song, L., and Rape, M. (2010). Regulated degradation of spindle

assembly factors by the anaphase-promoting complex. Mol. Cell 38,

369–382.

14. Santarella, R.A., Koffa, M.D., Tittmann, P., Gross, H., and Hoenger, A.

(2007). HURP wraps microtubule ends with an additional tubulin sheet

that has a novel conformation of tubulin. J. Mol. Biol. 365, 1587–1595.

15. Wong, J., and Fang, G. (2006). HURP controls spindle dynamics to

promote proper interkinetochore tension and efficient kinetochore

capture. J. Cell Biol. 173, 879–891.

16. Wong, J., Lerrigo, R., Jang, C.Y., and Fang, G. (2008). Aurora A regulates

the activity of HURP by controlling the accessibility of its microtubule-

binding domain. Mol. Biol. Cell 19, 2083–2091.

17. Stumpff, J., von Dassow, G., Wagenbach, M., Asbury, C., and

Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kineto-

chore movements to control mitotic chromosome alignment. Dev. Cell

14, 252–262.
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