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The sample covariance matrix is defined by

S =
1

n

n∑
j=1

(sj − s̄)(sj − s̄)T ,

where s̄ = n−1
n∑

j=1

sj and sj = (X1j, · · · , Xpj)
T . Here {Xij}, i, j = · · · , is a

double array of independent and identically distributed (i.i.d.) real r.v.’s with
EX11 = 0 and EX2

11 = 1.

Sample covariance matrices are also of essential importance in multivariate
statistical analysis because many test statistics involve their eigenvalues and/or
eigenvectors. The typical example is T 2 statistic, which was proposed by
Hotelling [2]. We refer to [1] and [3] for various uses of the T 2 statistic.

The T 2 statistic, which is the origin of multivariate linear hypothesis tests
and the associated confidence sets, is defined by

(1) T 2 = n(s̄− µ0)
T S−1(s̄− µ0),

whose distribution is invariant if each sj is replaced by Σ1/2sj with Σ any
non-singular p by p matrix when µ0 = 0. If {s1, · · · , sn} is a sample from
the p-dimensional population N(µ,Σ), then

[
T 2 /(n− 1)

][
(n− p)/p

]
follows

a noncentral F distribution and moreover, the F distribution is central if
µ = µ0. When p is fixed, the limiting distribution of T 2 for µ = µ0 is the χ2-
distribution even if the parent distribution is not normal.

In recent three or four decades, in many research areas, including signal
processing, network security, image processing, genetics, stock marketing and
other economic problems, people are interested in the case where p is quite
large or proportional to the sample size. Thus it will be desirable if one can
obtain the asymptotic distribution of the famous Hotelling T 2 statistic when
the dimension of the random vectors is proportional to the sample size. It is
the aim of this work.
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The main results are then presented in the following theorems.

Theorem 1. Suppose that:
(1) For each n Xij = Xn

ij, i, j = 1, 2, · · · , are i.i.d. real r.v.’s with EX11 =

µ,EX2
11 = 1 and EX4

11 < ∞.
(2) p ≤ n, cn = p/n → c ∈ (0, 1) as n →∞.
Then, when µ0 = (µ, · · · , µ)T ,√

n√
2cn(1− cn)−3

(T 2

n
− cn(1− cn)−1

) D−→ N(0, 1),

where Fcn(x) denotes Fc(x) by substituting cn for c.

One typical application of Theorem 1 lies in making inference on the large
dimensional mean vector of the multivariate model

Zj = Γsj + µ, Esj = 0, j = 1, · · · , n,

where Γ is an m by p matrix, m ≤ p. This model means that each Zj is a
linear transformation of some p-variate random vector sj. It can generate a
rich collection of Zj from sj with the given covariance matrix Σ = ΓΓT . Most
important, it includes the multivariate normal model.

We will prove Theorem 1 by establishing Theorem 2 which presents asymp-
totic distributions of random quadratic forms involving sample means and
sample covariance matrices.

For any analytic function f(·), define

f(S) = UT diag(f(λ1), · · · , f(λp))U,

where UT diag(λ1, · · · , λp)U denotes the spectral decomposition of the matrix
S.

Theorem 2. In addition to the assumption (1) of Theorem 1, suppose that
cn = p/n → c > 0, EX11 = 0, g(x) is a function with a continuous first deriv-
ative in a neighborhood of c, and f(x) is analytic on an open region containing
the interval

(2) [I(0,1)(c)(1−
√

c)2, (1 +
√

c)2].

Then,(√
n[

s̄T f(S)s̄

‖s̄‖2
−

∫
f(x)dFcn(x)],

√
n(g(s̄T s̄)− g(cn))

)
D−→ (X,Y ),

where Y ∼ N(0, 2c(g′(c))2), which is independent of X, a Gaussian r.v. with
EX = 0 and

(3) V ar(X) =
2

c

(∫
f 2(x)dFc(x)− (

∫
f(x)dFc(x))2

)
.
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